
NASA CR- 134476

NASA-CR-134 476) NASIS DATA BASE N73-31138

ANAGEMENT SYSTEM - IBM 360/370 OS NVT

IMPLEMENTATION. 7: DATA BASE
ADMIISTRATOR (Neoterics, Inc., Cleveland, Unclas

Ohio.)/%I8+1 p HC CSCL 09B G3/08 13776

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360/370 OS MVT IMPLEMENTATION

VII- DATA BASE ADMINISTRATOR USER'S GUIDE

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center

Contract NAS 3-14979
U i ' ,

_-

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-134476
4. Title and Subtitle NASIS DATA BASE MANAGEMENT SYSTEM - IBM 5. Report Date

360/370 OS MVT IMPLEMENTATION September 1973
6. Performing Organization Code

VII - DATA BASE ADMINISTRATOR USER'S GUIDE

7. Author(s) 8. Performing Organization Report No.

None

10. Work Unit No.

9. Performing Organization Name and Address

Neoterics, Inc. 11. Contract or Grant No.
2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio 44115 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary .Notes
Final Report. Project Manager, Charles M. Goldstein, Computer Services Division, NASA

Lewis Research Center, Cleveland, Ohio

16. Abstract

The NASIS development workbook contains all the required system documentation. The workbook

includes the following seven volumes:

- I - Installation Standards (CR-134470)

II - Overviews (CR- 134471)

III - Data Set Specifications (CR- 134472)

IV - Program Design Specifications (CR-134473)

V - Retrieval Command System Reference Manual (CR-134474)

VI - NASIS Message File (CR-134475)

VII - Data Base Administrator User's Guide (CR-134476)

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 179

* For.sale by the National Technical Information Service, Springfield, Virginia 22151

PAGE 2

TABLE CF CONTENTS

TOFIC A - MULTI-TEMINAL TASKING

A.2 MT/T OPERATORS GUIDE. 6

I. INTRODUCTION 6
II, MONITOR COMMANtS , 6
APPENDIX A 9

COMMAND SUMMARY 9

TOPIC B - DATA BASE EXECUTIVE

B.1 DBPAC CONV., AND TOPM. ROUTINES 10

I. INTRODUCTION, 10

II. CALLING SEOUENCE., 11
III. RESTRICTIONS, . , , 13
APPENDIX A 14
Diaqnostic ;essaqes and Codes. 14

APPENDIX B , * . * 15
Sample Validation Routine* , 15

B.2 DBPLI LANGUAGE EXTENSION , 16

I. INTRODUCTION. 16
II. THE PREPROCESSOR. 16
III. DATA BASE AND FILES 18
IV. RECORDS 22
V. FIELDS. 23
VI. LISTS 26
VII. RULES AND SYNTACTIC DESCRIPTIONS. . . . 32

The CCLIST Function , 33

The CLOSE Statement 34
The CPLIST Function 35
The DB Preprocessor Function. 36
The DUPLIST Function. 38
The #FIELD Furction 39
The FINISH Statement. 40
The FREE LIST Statement 41
The GET FIELD Statement 42
The GET INDEX KEY Statement 44
The GET KEY SET Statement 45
The GET LIST INT. KEY INTO Statement. . . 47
The GET LIST KEY (0) Statement. 48
The GET LIST KEY INTO Statement 49
The GET LIST KEY SET Statement, 51
The GET LIST SET Statement. 52
The GET RECORD Statement. 54
The % INCLUDE DR Statement. 55
The LIST Function 56
The #LIST Function, 57

The LOCATE Statement. 58
The LOCATE SUfFILE Statement. 60

The ON Statement. 61
The OPEN Statement. 62

PAGE 3

The PUT FIELD Statement 64
The PUT LIST INT. KEY FROM Statement. .. 66
The READ Statement. 67
The READ INDEX Statement. 70
The READ SUEFILE Statement. 72
The REPUT Statement , 74
The SET LIST LIKE LIST Statement. 77
The ULIST Function. 78
The UNLOCK Statement. 79
The UPLIST Function 80
The WRITE Statement 81
The #XREF Function. 82

APPENDIX A.. 85
File Level Statements 85
Record Level Statements 85
Physical Record Statements 85
Field Level Statements. 86

Data Base List Statements 86
Non Data Base List Statements 86

Glossary. 88

TOPIC C - UTILITIES

C.4 RDBJOIN - JOINING NEW USERS. 89

I. INTRODUCTION. 89
II. COMMANDS. 89

JOIN. 89

DELETE. 90
DISPLAY 91

II. EXAMPLES. 91

TOPIC D - MAINTENANCE

D.2 DESCRIPTOR EDITOR. 92

I. INTRODUCTION. 92
II. INVOKING THE EDITOR 92

III. DEFINITIONS 93
IV. CREATE MODE FUNCTION. 93

ADD-CHANGE Function 93
ADELIKE Function.101
CHKPOINT Function102
CREATE SUBFILE Function102
DELETE Functicn103
DISPLAY Function.103
END Function. ,103
FIELDS Function104
FILE Function104
FIELD SECURITY.104
MOVE Functicn105
PRINT Function.106

PAGE 4

RENAME Functicn106
RECORD SECURITY Function. 107

RESTORE Function. ,107
SAVE STRATEGY Function107

DEFINE SUPER FIELD Function108
IV. UPDATE MODE FUNCTIONS, . . 109

CHANGE Function109
DISPLAY Function.113
END Function,.113
FIELDS ?unction 113
FIELD SECURITY Function 113
PATCH Function.114
RECORD SECURITY Function.117
REVIEW Function118

APPENDIX A..120
Command Formats 120

APPENDIX B,.124

Create Code Operand Relationship.124
APPENDIX C...126

Predefined Fields126

APPENDIX D.. o o a o v 129

Descriptor File Overviei. 129
APPENDIX E,.132

The Position cf Fields.132
D,.3 RDBLOAD - LOADING NEW FILES.133

I. INTRODUCTION. 133
II, LINKEDIT. ,133
III. INPUT AND OUTPUTS ,133
IV. CCNTROL . .. o.135
V. OPERATING MODE,139
VI. DBLOAD EXIT RCUTINES. , 140
VII. LOADING MULTI-FILES 142

D.4 FILE INVERSION - INDEXING.151
I, INTRODUCTION,151
II. MODE OF OPERATION , , ,151
III. IPUTS AND OUTPUTS152
IV. CONTROL152
V. EXAMPLES OF USE ,158

D.5 INDEX MERGE - COMBINE.161
I. INTRODUCTION,o .161
II. INPUTS AND OUTPUTS161
III. CONTROL161
IV. MODE OF OPERATIONS ,163
V. INVOKING DBINDM o164

VI. EXAMPLES o164

VII. PROGRAM NOTES o 165
D.7 RDBMNTN - MAINTENAECE - UPDATE166

I. INTRODUCTION, 166
II. INPUTS AND OUTPUTS. , ,166
III. CONTROL . . o166
IV. MAINTENANCE OPERATING PROCEDURES. ., . .167
V. MAINTENANCE NODE OF CPERATICN168
VI. EXAMPLES.168

PAGE 5

TOFIC E- TERMINAL SUPPORT

E.1 TSPLI LANGUAGE EXTFNTION169
I. INTRODUCTION, . . , , 169
II, STATEMENTS,170

ENABLE Statement.170
ENTRY Statement171
ON PAGE CALL Statement.171
PROMPT MSG Statement. . . o171
PROMPT MSG KEYWORD Statement.172
REAr INTO Statement173
WRITE FROM Statement,.173
PUT FROM Statement.173
FLUSH Statement174
FINISH Statement174

TOPIC G - USAGE STATISTICS

G.1 USAGE STA TICS 175
I. INTRODUCTION.175
II. STATISTICS CRECKPOINT175
III. RETRIEVAL STATISTICS EPOCT176
IV. MAINTENANCE STATISTICS REPORT191

PAGE 6

TOEIC A.2 - MT/T CPERATOR'S GUICE

I. I NTRODUCTION

The single program that ccntrols NASIS when the MT/T
version of that system is running is called the MT/T
Monitor. The monitor is the only part of NASIS with which
the HT/T Operator communicates.

To communicate with the monitor simply depress the ATTENTION
key. The monitor will prompt you with a time-stamped
question mark, for example:

10:25 ?

and unlock the keyboard. Note that while your keyboard is
unlocked, NASIS is stopped. Waste no time in entering
commands and never, never leave your terminal sitting with
its keyboard unlocked.

II, MONITOR COMMANDS

The monitor commands are comprised of a command name and, in
some cases, additional operands. The monitor, when reading
commands, recognizes three "special" characters--two
delimiters: (separators between command names and/or
operands) comma and blank, and a character which may enclose
an operand to denote that that operand has "special"
characters within it: the quote mark. The delimiters
behave slightly differently--a string of contiguous blanks
is interpeted as one delimiter, but two contiguous commas
are interpeted as two delimiters, and so forth. If you have
to put blanks, commas or quotes within an operand, you must
surround that operand with quote marks. In addition, if
there are enclosed quotes, they must be paired inside the
operand. For example

'don''t let this confuse you, it''s not really that
difficult'

is a valid quoted string containing embedded commas, blanks
and quote marks.

MSG NASISID,TEXT Sufficient Abbreviation
(S.A.): M

This command sends the message specified by the TEXT operand
to the user who is on NASIS under the userid specified by
the operand NASISID. Remember to surround the message text
with quote marks if it contains ccmmas, quote marks, or
imbedded spaces. Example:

n NEO1,'HERE1'S A MESSAGE.'

BCST TEXT S.A.: B

PAGE 7

This command sends the message specified by the TEXT operand
to all the users logged on to NASIS. Example:

BC 'DATACELL IS DOWN NSIC notAVAILABLE.'

FORCE NASISIC S.A,: F
This command is used to terminate a NASIS user. The user
(identified by NASISIE) is sent the message
"*** TASK DELETED BY FORCE ***" and then logged off.
Exam ple:

F NEO1

KILL NASISID S.A.: K
This command is used when FORCE fails. The KILL command may
be reentered several times. The user (if the KILL works)
will receive a program interrupt five at location zero, so
you may ignore the message abcut that event. Example:

KI NEO1

SHUTDOWN TIME S.A.: S
This command terminates NASIS. The TIME operand specifies
how long to wait before actually terminating the system
(default is five minutes). If the time specified is zero
minutes NASIS is terminated immediately. This zero-time
shutdown should be used only when absolutely necessary
because it doesn't give warning to the users. Normally,
both you and the users get a message stating the time-of-day
when the system will shut itself down. Should you change
your mind about the shutdown enter another shutdown to
override the previous one. (Only the last SHUTDOWN command
entered has any effect.) Example:

S 30 (To terminate NASIS in a half-hour)

LIMIT TERM,# S.A.: L
This command allows you to limit the number of users of
various sorts allowed on NASIS and to limit some of the
resources of NASIS itself. The TERM operand is either a
"class" of NASISIDs (defined as the first two characters of
the NASISID) or one of the keywords "USERS", "PRINTS",
"SEARCHES", "SOPTS" or "RECORDS". The keyword "USERS" is
used to limit the total number of users allowed on NASIS and
is the default value assumed if TEM is omitted. Keyword
"SEARCHES" limits the size of a set a NASIS user may search
on, "PRINTS" limits the size of a set be may print and so
on, If the TERM operand consists of exactly two characters
it is assumed to be a class name and the number of NASISIDs
of that class allowed on NASIS will be limited. If the TERM
operand consists of any other number of characters than two,
it is assumed to be a keyword or a part of a keyword. If
the # operand is defaulted, the value 32767 is used. If the
operand is entered, TERM must be also entered, even if you
use just a comma to default it. Examples:

LIMIT ,20 (Limit total number of users to 20)
L S,50 (Limit search set size to 50)

PAGE 8

LI NE,2 (Limit "NE" NASISITS to 2)

USERS S.A.1 U
This command lists all the NASISIDs of the users currently
using NASIS. Only those users comrletely logged on are
listed, if there are users in the process of getting on,
they will not show up on the list from a USERS.

NUSEPS S.A.: N c/:N/: N/
This command tells you how many users are currently using
NASIS. Unlike USERS, this command also tallies the users
who are in the process of logging on.

NEWS "OFF"ITEXT S.A.: NE
This command is used to control the sending and composition
of the "news" which is sent to each user as he logs on to
NASIS, Entering "CFF" as the operand terminates the sending
of all news and deletes all the text from the news buffer.
Entering anything but "OFF" causes whatever you enter to be
added as the last line to whatever is already in the news
buffer. If you enter no operands at all to NEWS, it will
add a carriage-return to the end of the news buffer.
Exam ples:

NEWS OFF (Kills the sending of news)
NEWS 'THIS LINE WILL GC AT THE IND OF THE BUFFER.'

STATS "ON/"OFF" S.A. ST

When this command with operand OFF is encountered, the
Monitor turns on an indicator telling NASIS not to take
usage statistics. If ON is entered as the operand, that
indicator is turned off. NCTE: This command may only be
entered via the "NASIS.COMMANES(O)" dataset.

PAGE 9

APPENDIX A. - COMMAND SUPMARY

CO MAND OPERANDS FUNCTION

MSG NASISID,TEXT Send message to specified user.

BCST TEXT Send message to all users.

FORE NASISID Get rid of a user.

KILL NASISID Really get rid cf a user.

SHUTDOWN TIME Terminate NASIS.

LIMIT TERM,# Limit NASIS users or resources.

USERS List current NASIS users.

NUSERS Count current NASIS users.

NEWS "OFF"ITEXT Turn off or add to news text.

STATS "ON"/"OFF" Set usage statistics mode.

PAGE 10

TOrIC B.1 - CONVERSION, VALIDATION, AND FCRFATTING
ROUTINES

1. INTRODUCTION

The design of the NASIS system provides for three types
of user-written routines to perform special processing
unique to a particular field. A "user" is a mainline
programmer for the specific data base; such as the data
base administrator. These routines are classified as
conversion, validation and formatting.

The DBPL/I statements used in the NASIS system provide
for updating and retrieving from a data tase. The data
is always assumed to be character strings. The ability
to specify Conversion, Validation and formatting
routines is provided, allow for massaging field data
and still meet the DBPL/I character string
requirement.

The Conversion routine is used to alter character
string input to any desired form. The Validation
routine is used either to verify the results of a
Conversion routine or to verify the character string
input.

The Formatting routine is used to alter the internal
stored data back to a character string.

A. CONVERSION Routine

The CONVERSION routine is called by the data base
executive, DBPAC, to convert the data passed by
the user in a DBPL/I statement from an EBCDIC
character string to some other type of
reDresentation fcr storage on a file. The
CONVERSION routine is invoked by all DBPL/I
statements that place data, by field name, onto
the data base.

B. VALIDATION Routine

The VALIDATION routine is call of theed
immediately after the call CONVERSION routine.
The function of this routine is to verify data
input for storage on the data base, via the rules
specified by the user of this field. A VALIDATION
routine may be present regardless of the presence
of a CONVERSION routine. To assist in this
evaluation, the NASIS system provides for a
validation argument.

PAGE 11

C. FORMATTING Routine

The FORMATTING routine is called to change the
data read from the data tase into the desirable
output form. The FCRMATTING routine is invoked by
all DBPI/I statements that retrieve data, by field
name, from the data base. The formatting routine
specified for a field will be called whenever the
data in that field is retrieved.

A collection of "standard" conversion and
formatting routines is provided in the DBEXITS
module (Section IV, Topic B.4).

I. CALLING SEQUENCE

In general, these routines are called dynamically, by
name. They Eust have been link-edited with the current
Retrieval system and be capable of accepting a PL/I
formatted parameter list.

A. CCNVERSION Routine

The format of the CALL statement used by DBPAC to
invoke the CONVERSICN routine is as follows:

CALL rtnname (input-data, output-area,
error-bit);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field
descriptor, It is the routine's
procedure name or an entry point,

"input-data" is a varving length character
string, maximum length equal to 4000,
into which DBPAC has placed the input
data value.

"output-area" is a varying length character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the converted data
value.

"error-bit" is a bit switch, initialized to
one (1), which is set to zero (0) if
there were no errors uncovered in the
conversion, or cue (1) if errors were
detected. The turden of setting the
switch to zero (0) is with the

PAGE 12

CONVERSION routine.

B. VALIDATICN Routine

The format of the CALL statement used by DBPAC to
invoke the VALIDATICN routine is as follows:

CALL rtnname (input-data, output-area,
error-bit, argument);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field
descriptor. It is the routine's
procedure name or an entry point.

"input-data" is a varying lencth character
string, maximum length equal to 4000,
into which DBPAC places the input data
value after conversion.

"output-area" is a varying length character
string, maximum lenath equal to 4000,
initialized to null, into which the exit
routine places the validated data
value.

"error-bit" is a bit switch, initialized to
one (1), which is set to zero (0) if
there were no errors encountered in the
validation, or one (1) if errors were
detected. The VALIDATICN Routine is
responsible for setting this switch.

"arqument" is a varying-length character
string, maximum length equal to 50, into
which DEPAC places the validation
arqument, as read from the appropriate
field of the descriptor for this data
field.

C. FORMATTING Routine

The format of the CALL statement used by DBPAC to
invoke the FORMATTING routine is as follows:

CALL rtnname (input-data, output-area);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field

PAGE 13

descriptors. It is the routine's
procedure name or an entry point.

"input-data" is a varying length character
string, raximum length equal to 4000,
into which DEPAC places the data value
read from the data base.

"output-area" is a varying length character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the formatted data
value.

III. RESTRICTIONS

The routines must heed the following restrictions:

A. The routine can not make any calls to DBPAC (i.e.,
it should not contain any DBPL/I statements).

B. The routine is the lowest level module; i.e., it
does not call any other routines.

C. The routine is written in PL/I and compiled with
the same compiler as the Retrieval PL/I modules.

PAGE 14

APPENDIX A.

Diagnostic Messages and Codes Produced By the Conversion,
Validation, and Formatting Routines.

A. Diagnostic Messages

CALL ERROP: MODULE ******** CANWCT EE LOADED.

This error message is generated if the module named
cannot be loaded when called by DBPAC. Ignoring the
situation and allowing the system to run may cause
unpredictable results.

The most probable reasons for this errcr are:

1. failure on the part of the user to have the job
library containing this program properly DDEFed.

2. inconsistency between the name of the routine as
specified in the descriptor file and the name
actually used when writing the program.

B. DBPAC Error Codes Associated With the Conversion,
Validation, and Formatting Routines

031 KEY FIELD FAILED CONVERSION.

The data value passed to the CCNVERSION routine, for
the key field of the data base, was found to be in the
wrong format.

032 KEY FIELD FAILED VALIDATION.

The data value passed to the VALIDATION routine, for
the key field of the data base, was found to be
invalid.

053 EATA FIELD FAILED CONVFRSICE.

The data value passed to the CCNVERSION routine, for a
data field, was found to be in the wrong format.

054 DATA FIELD FAILED VALIDATICN.

The data value passed to the VALIDATION routine, for a
data field, was found to be invalid.

PAGE 15

APPENDIX B.

Sample Validation Routine

A sample VALIDATION routine is shown below. The function of
the routine is to compare the input data value to each of

the four byte entries carried in the validation arguments.

If a match is found, the routine substitutes a numeric code
for the input data value, resets the error bit to accept the
field and returns to DBPAC. If no match is found, the
routine returns to DEPAC with the error bit set to reject
the field.

/* THIS IS A VALIDATION ROUTINE FOR TEE OPERATION CODES: */
/* THE PARAMETERS PASSED ARE:
/* A= THE INPUT STRING VHICf IS TO BE VALIDATED. */
/* B= THE VALUE TO BE RETURNED AFTER VALIDATION. */
/" C= THE BIT SWITCH. 'C' MEANS PASSED VALIDATION. */
/* '1' MEANS FAILED VALIDATION. */
/* D= THE VALIDATION ARGUMENTS. /

D IS COMPOSED OF THE FOLLOWING CBARACTER STRING: */
/* 'ADDEADDRCNGEFLDCFL RDELf' /

CHECKOP: PROCEDURE (A,B,C,D) ;
DECLARE (A,E,r) CHARACTER(*) VARYING, /*PARAMETERS. */

C BIT(1); /*PARAMETERS. */
ON ERROR GO TO OUT_DIRTY;
DO I = I TO 21 EY 4;
IF A = SUBSTR(D,I,4)
THEN GO TO CUT-CLEAN;
END;

OUT DIRTY: /* IF IT DOES NOT MATCH KEYWORDS IN ARGUMENT. */
C = 'I'B;
RETURN;

OU T_CLEAN: /* THE VALIDATION CF OP CODE VAS SUCCESSFUL. */
C = 'O'B
B = A;
RETURN;
END CHECKOP;

PAGE 16

TOIC B.2 - DBPL/I LANGUAGE EXTENSION USER'S GUIDE

I. INTRODUCTION

This manual is for PL/I Programmers writing a mainline
program that accesses a NASIS data base. The data base
organization being used is fully specified in the
"NASIS Overview".

All data base access is done by a combination of:

1. an extension of the PL/I language, called
DBPL/I, for data base access,

2. a compilation-time source program processor,
DB, and

3. execution-time routines DEPAC and DBLIST.

This manual is the specification of the DBPL/I
language extension and is the refererce manual to the
DB preprocessor. Detailed specification of the
internals of the EB preprocessor are given in Section
IV, Topic B.1 of the DVB, and the details on the
execution-time routines are given in the DBPAC Design
Specifications (Section IV, Topic P.2 of the DWB).
Neither of these two sections are needed for writing,
compiling and executing ainline programs; they may be
needed for debugging.

Chapter II of this manual discusses the usage of the
DB preprocessor. Chapters III through VI are composed
of discussions and examples of the different features
of DBPL/I and their interrelationships. Chapter VII,
"Rules and Syntactic Descriptions", provides a detailed
reference to specific information in alphabetical
order. Appendix A is a quick reference to DBPL/I
syntax.

II. THE PREPROCESSOR

A. Overview

DBPL/I language statements have to be processed
at compilation-time. The processing consists of
syntax analysis and the generation of PL/I
statements CALLing DBPAC to accomplish what the
DBPL/I statements signify. This processing is
done by the preprocessor stage of the PL/I
compiler under control of a preprocessor procedure
named DB. A prcorammer using DBPI/I does not have
to write the DB preprocessor or be concerned with
the PL/I statements that are generated by it; but
he is required to write certain statements in his

PAGE 17

source program so that the DB preprocessor is
properly invoked by the PL/I compiler for his
program. He must also refrain from using certain
identifiers which are reserved words for the DB
preprocessor's exclusive use.

B. Usage

The statements required tc prcperly invoke the DB
preprocessor are illustrated in an example program
in Figure 1.

1. FIG 1: PROCEDURE OPTICNS (FEEFTBANT);
2. % INCLUDE LISBMAC(DE):
3. DECLARE REPORT# CHARACTER (13) VARYING;
4,
5. DB ((ON ERRORFILE(STAR) GO TO NOTE;))
6.
7. DB ((
8. BEAD FILE(STAR) KEY('67N26508');
9. GET FILE(STAR) FIELD('REPTNC') INTO(REPORT#);
10.))
11. PUT DATA (REPORT#);
12. RETURN;
13.
14. NOTE: PUT DATA (STAR.CNCODE);
15. DONE: DB ((FINISH;))
16. END FIG 1;

I INCLUEF(DB)

One %INCLUDE DB statement must be written
immediately following the external PROCEDURE
statement of the compilation. Any PROCEDURE
statement attributes could have been used in line
1. The % INCLUDE DB statement must precede all
other statements such as line 3.

DB((ON EPRORFILE(STAR) GO TO NOTE;))

Any DBPL/I statement, such as this ON statement,
must be written as a sutargument in a DB
preprocessor functicn reference. As many DB

statements may be used as required. Any PL/I
statements required may be used at lines 3, 4, 6,
and 11-14. Lines 7-10 illustrate that more than
one DBPI/I statement may be written in one DB
statement. However, no non-DEPL/I statements
would be -ermitted within a DB function
reference.

DP((FINISH;))

PAGE 18

One DEPL/I FINISH statement must be written
following all other p/E statements in the
compilation. It will usually be written just
preceding the ENE statement of the external
procedure because it generates a FETUPN statement.
If the statement in line 14 is executed, then the
procedure will be terminated by control passing
sequentially to the RETURN statement generated for
line 15. The label in line 15 is not required,
but it would be valid as shown (e.g., line 12
could be: GO TO DONE;).

The DB preprocessor functicn oenerates diagnostic
comments (see Section III, Topic B.1 of the
DWB). When reviewing a compilation, the
programmer should first find the summary
diagnostic message (DB067) to know how many error
diagnostics for which to search.

C. Reserved Words

The FINISH ON-condition is reserved for use by the
DB preprocessor. The following identifiers are
reserved for the uses specified in this manual or
for the DB preprocessor's use:

CCLIST
CPIIST
DB
DBFPCBP and all other identifiers beginning

'DB'
DUPLIST
ERPORFILE
#FIELD
DBPL/I file-names
FINISH
LIST
#LIST
LISTERR
ULIST
UPLIST
#XBEF

The PL/I HIGH and NULL built-in function names may
be used as such in the program, but the names must
not be otherwise declared.

III. DATA BASE AND FILES

A. Overview

The DBPL/I language provides statements that
enable data to be transmitted between internal

PAGE 19

main storage and external storaae devices
organized as one or more data bases.

B. Data Sets

Each "data set" is a named, latelled collection of
related data, subdivided into keyed data set
records.

The one "descriptor data set" for a data base
stores data describing the information data set(s)

and their interrelationships. It is a collection
of one or more descriptor regions.

Each "descriptor region" is a collection of
descriptor records for an information data set.
The first record in a descriptor region is a data
set descriptor record. Subsequent records in a
descriptor region are field descriptor records.

C. Files

DBPL/I requires a file name to be used for a file.
What data set(s) a file name represents is deduced
from the file title. Characteristics of a file
may be described with keywords, called file
attributes, specified for the file name, deduced
contextually, or assumed by default.

A "file name" is an identifier specified in the
FILE clause of DBPL/I statements. A file name may
not exceed the seven-character length limitation
for external names. The user must execute a PL/I
ALLOCATE statement for the MFCB tefore executing
any DBPT/I statements. For example, to use a
DBPL/I file-name "plex" the following statement
must be executed:

ALOCCATE PLEX:

Of course the allocation must be done in a program
in which PLEX will be automatically declared
because of its use in a DBPL/I statement. If the
module where the ALLOCATE is to be done does not
otherwise need DBPL/I statements, the following
are recommended as a minimum:

% INCLUDE LISRMAC(DB);
ALLOCATE PLEX;
DB((CN EBROBFIIE(PLEX) SYSTEM;))
DB((FINISH;))

A "file title" can be specified for a DBPL/I file

PAGE 20

either through the file name or through the

character string value of the expression in the
TITLE option of a EBPL/I OPEN statement. If a
file is OPENed implicitly, or if no TITLE option
is specified in the OPEN statement that causes
explicit opening of the file, the file title is
assumed to be the same as the file name.

A file title, not beginning with a pound sign (f),
consists of a six-character left-aligned dataplex
identification and a one-character suffix. Which
data set(s) the file name represents will be
deduced from the file title suffix value as
follows:

blank: the identified data base or anchor
data set (for physical record
operations: GET RECORD or WRITE).

numeric: the particular associated data
set.

Z-Q: the particular subfile data set.

A-P: the particular index data set.

A pound sign (#), prefixed to a file title,
specifies that a file name represents the
descriptor region rather than the information data
set itself. (This combination may be specified
only in the TITLE option of a DBPL/I OPEN
statement because it results in an eight-character
title.) If the eighth character of a descriptor
region title is blank, the file represents only
the anchor descriptor region. This facility
allows mainline prcqrams tc create, maintain or
retrieve from descriptor regions for their own
purposes.

File "attributes" for a file name may be

specified explicitly in a EEPL/I OPEN statement or
assumed by default. Different attributes may be

applied in different openings of the same file in

a program; at any particular time, the attributes

applied by the most recent opening apply to the
file name.

File Level Statements

DBPL/I provides the OPEN, CLOSE and ON ERROPFILE
statements for file level operations. All are
optional; a simple mainline may not need any of
them. There is er statement for declaring a

PAGE 21

DBPL/I file; the DE preprocessor generates the
necessary Mainline File Control Block (MFCB)
automatically.

The OPEN and CLOSE statements may be used for any
of the purposes indicated in their descriptions in
Chapter VII of this manual.

The ON ERRORFILE statement is used to establish a
user's error routine in the mainline to which the
DBPAC execution routines will return when an error
condition (e.q., key not found) occurs on a file.
Several ON statements for a file may be executed
in a program either before or after the file is
opened.

An "error routine" must teqin with a statement
label (the same latel identifier specified in an
ON statement). PL/I (or DELI/I) statements may be
written followinq the latel to handle the error.
These statements may reference certain fields in
the MFCE for assistance in determining the error
identity and resurina normal execution. MFCB
fields are referenced using a qualified name
consisting of the file name and an MFCB field
name. The MFCB fields that may be referenced in a
file exception rcutine are as follows:

file-name.ONCODE is a binary inteaer whose
value specifies the exceptional
condition. The meanings of the various
ONCODE values are in Section III, Topic
B.3 of the DWB.

file-name.ONFIIE is the current file title.

file-name.ONTTELD is the current field name
(when applicable).

file-name.ONREURN is a label variable set by
DBPAC.

An error routine may be terminated in any manner;
for certain of the less serious ONCODEs, a GO TO
file-name.ONRETURN; statement may be used which
transfers control to the statement following the
one that raised the exceptional condition.

For a more generalized exception routine for one
or more files, the relevant MFCP fields may be
referenced using a Qualified name consisting of
the reserved keyword EBPORFILE and an MFCB field
name; e.,, ERRORFIIE.ONCODE.

PAGE 22

IV. RECORDS

A. Cverview

The data items in a data set are arranged in data
set records. In this manual, a "physical record"
means a single data set record having an internal
self-definino, variable-length format, a
fixed-length internal key, and the other data
items.

The simple term, "record", in this manual means
either a logical record or a physical record,
depending on content.

The "current record of a file" is the single
record having the key value established by the
most recent record level operation on the data
base component file. It is accessible only by

DBPL/I statements; the mainline has no means of
addressing it. In a spanned index, the "current
record" is actually a "region" of one or more
physical records made to tehave like one logical
record.

E. Record Level Statements

DBPI/I provides the LOCATE, READ, and UNLOCK
statements for record level operations. The
record level statements cause a record (possibly
more than one physical record) to be transmitted
between the data set(s) and the current record of
a file. The transmission may be immediate (READ
or UNLOCK after update) and/or subsequent (LOCATE
or READ for update). ICCATE and REAr cause
automatic file opening, if necessary.

The LOCATE statement is used to create a new
current record having a new key for subsequent
transmission to the file (no WRITE statement is
needed). The LOCATE SUBFIIE statement is used to
create a new current subrecord.

The REAr statement is used to retrieve a record
from a file and establish it as the current record
of the file. If the record is updated, it is
subsequently retransmitted to the file (no REWRITE
statement is needed). The READ SUBFILE statement
is used to retrieve a subrecord and READ INDEX to
retrieve an index record.

The UNLOCK statement releases a locked current
record so that other tasks can read it. If the

PAGE 23

record was updated, it is retransmitted to the
file. The UNLOCK SUEFILE statement releases a
locked current subrecord.

C. Physical Record Statements

DBPL/I provides the GET RECORD and WRITE
statements for physical records. These are
special purpose statements intended for use in a
utility mainline for backing up, restoring or
reorganizing one particular data set at a time.
They may be used only by the owner of the data
base.

The GET RECORD moves the current physical record
without change to the user's receiving field (for
backup purposes).

The WRITE statement transmits a physical record
from the mainline without change to a data set
(for restoring or reorganizinqg purposes). WRITE
causes automatic file opening, if necessary.

V. FIELDS

A. Overview

The data items in a record are arranged in fields

and, optionally, field elements.

A "field" is a data item having a field name, an
internal field descriptor and one or more values
per record. Since some fields may have multiple
values per record, an individual data item is
called a field element. This section of the
manual relates primarily to anchor, associated and
subrecord fields, although the GET INDEX KEY
statement may be used for index key fields.
Facilities for subfile ccntrol fields and for the
list-of-keys field in index records are discussed
in Chapter VI of this manual.

A "field name" is an eight-character string value
identifying a field. A mainline written in terms
of a known particular data base may use a
character-string constant in string quotes. A
more generalized mainline may use an
eight-character string variable and assign a value
to it from input data or from a descriptor record
before using it as a field name. The names of the
fields in field descriptor records are given in
the Descriptor File Specification.

PAGE 24

An "internal field descriptor" is either a field
descriptor record in a descriptor region (for data
base fields) or an internal descriptor (for
descriptor fields). The descriptor record for an
anchor field may limit GET access of a FIELD to
those users the file owner has authorized. (PUT
and REPUT may be used only by the file owner).

A "field element value" is always a varying length
character string value in the mainline.
(Internally, it may be fixed- or variable-length
and character or ccded form.) There may be some
transformation between the internal value and the
mainline value. If the field descriptor names an
input validation and/or conversion routine or an
output formatting routine, the relevant routines
will be invoked automatically when the field is
accessed.

The internal value of a field element is null
until a value is PUT into it. A GET FIELD
statement retrieves a value even if it is null; a
null value yields a null mainline string value
(unless a formatting routine translates a null
internal value to something non-null such as 'NO
DATA YET'). To handle such a case, the most
general way to retrieve field values is as
follows:

DO I=1 TO MAX(#FIELE(mfcb,fldname),1);
DB((GET FILE(mfcb)FIELL(fldname)INTO (var) ;))
IF LENGTH(var)=O

THEN GO TO FIELDEXHAUSTED;
/*Use field element value in var.*/
END;

FIEtLDEXHAUSTED:

Do not attempt GET FIELD more than #FIELE times or
something like 'NO DATA YET' will be retrieved
after values actually present. The mainline may
determine if the field element is null by testing
if the length of the mainline string is zero. A
REPUT statement replaces an element with a new
value which may be a null value.

B. Field Level Statements and Functions

DBPL/I provides the PUT FIELD, GET FIELD and REPUT
statements for the creation, retrieval, and
maintenance of field elements on anchor and
subfile records. #FIEID is a PL/I function
provided for obtaining the numbers of elements in
a field. The field level statements cause one or

PAGE 25

more field elements to be transmitted individually
between the current record of a file and a
mainline proaram. A record level statement must
have been executed to establish a current record
of the file before a field level statement may be
executed.

The PUT FIELD statement is used to create a new
field element in the current record of the file.
It is subsequently transmitted to the file
automatically (no WRITE or REWRITE statement is
needed).

The GET FIELD statement is used to retrieve a
field element from the current record of the
file.

The REPUT statement is used to replace an existing
primary field element in the current record of the
file. It is subsecuently retransmitted to the
file automatically (no REWRITE statement is
needed).

The IFIELD function calculates the number of
elements in a field. It may be used to govern
GETting of elements or merely to determine if a
field has any elements or noct.

For a field that may not have multiple elements,
the field level statements transmit the single
field element value.

The following discussion applies to fields that
may have multiple elements. PUTtine an element
appends it to the right end of the field. GETting
of a FIELD element proceeds from left to right
and, when the end of the field is passed, null
values are generated. REPUTting an element
replaces the "current element of the field" which
is the element most recently obtained by a GET
FIELD from the current record of the file. There
is no facility for referring to an element by its
position (subscript) in the field. If it is
necessary to (re)GET an element that is to the
left of the current element, the record may be
(re)READ, resetting all of the internal current
element counters to the first element of the
fields. If it is necessary to maintain field
elements in some order dependinq on their mainline
values (rather than the order in which they are
entered), the following technique may be used (for
ascending sequence):

PAGE 26

DECLARE (OLD,NEW) CHARACTER (maxlen) VARYING;
NEW = expression;
DB ((READ FILE (name) (positioning);

NEXT_ELEMENT:
GET FILE (name) FIELD (fieldname) INTO (OLD);

IF LENGTH (OLD) /* IF OLD IS NON-NULL */
THEN DO;

IF OLD > NEW /* GREATER THAN*/
THEN DO; /*INSEET ELEMENT */

DB ((REPUT FILE(name)
FIELE (fieldname) FROM (NEW);));

NEW = OLD; / FOR PROPAGATION */
EN:;

GO TO NEXT ELEFENT;
END;

DB ((PUT FILE (name) FIEID (fieldname) FROM
(NEW);));

C. Index Field Retrieval

DBPL/I provides a special GET INDEX KEY statement
and the #XREF function for retrieval from index
records. (Such records Pay not be explicitly
created or maintained by mainline programs). A
READ INDEX statement must have been executed to
establish a current record of an index before a
GET INDEX KEY or #XFEF may be executed.

The GET INDEX KEY statement is used to retrieve
the index key field value from the current record
of the index.

The #XREF function calculates the number of cross
references (anchor cr subfile key elements) in the
current record (region) of the index.

The GET FIELD statement and #FIELD will not work
on index record fields. An index record RECLEN
field cannot be retrieved (it doesn't mean much in
a spanned index). The GET INDEX KEY statement is
provided for the index key field. #XREF is
provided (instead of #FIELD) for the cross
reference field element count. The GET INDEX LIST
SET statement (see section VI.B below) retrieves
the whole cross reference list (instead of an
element at a time).

I,. LISTS

A. Overview

PAGE 27

A "list" of keys is a collection of ascending
internal key elements in main storage, identified
by a mainline list pointer. (The keys are
accessible only by DBPL/I statements).

A "list pointer" is a PL/I pointer variable
declared in the mainline, set by a DBPL/I GET SET
statement or LIST functicn reference, and used to
identify a list. A list pointer having the PL/I
NULL pointer value identifies a null (empty)
list.

Under OS, 'main storage' for key lists consists of
a large randomly accessible file. The list
pointer addresses a ccntrol block, held in real
memory, which describes the list.

There are several ways to form lists (see Figure
1):

1, Read anchor records sequentially and Dick
keys,

2. Read subrecords sequentially from a subfile
and pick keys,

3. Copy an index record cross reference list.

4. Copy a subfile control field.

5. Merge the subfile control fields from a
series of anchor records specified in a
list,

6. Merge the parent keys from a series of
subrecords specified in a list,

7, Get keys sequentially from a list and Dick
interesting cnes,

6. Drop the duplicate keys from a list,

9. Get internal keys sequentially from a list
and generate internal keys for an output
list,

10. Logically combine (AND, OR, or AND NOT)
compatible lists.

The number of keys in a list may be found. Key
elements (in external or internal form) may be
taken from a list. A list may be used to control
READing of anchor records. The mainline may

PAGE 28

request and get control of any errors in the use
of lists.

Method 1: forming a list of anchor keys;

ptr=NULL;
-->LB((RAD FILE(plex) file-positioning;))

I DB((GET FILE(plex) KEY SET(ptr);))

the GET KEY SET may or may not be executed
depending on the result of GET FIELD statements,
etc.

Method 2: forming a list of subrecord keys:

ptr=NULL;
-->DB((BEAD FILE(plex) SUFFILE(scfn)
| file-positioning;))

DE((GET FILF(plex) SUEFILE(scfn)
KEY SET(ptr);))

It is analogous to method 1.

Method 3:

DB (READ FILE(flex) INEEX(ifn)
file-positioning;))

DB((GET FILE(plex) INrEX(ifn)
LIST SET(tr);))

It may be used on any index.

Method 4:

DE((READ FILE(plex) file-positioninq;))
DB((GET FILE(plex) SUEFILE(scfn) LIST
SET (ptr);))

It copies the multi-element control field as a
list of those subrecords in a subfile that are
dependent on a particular anchor record, i.e. a
"chain" of related detail records. Note that a
control field is essentially a stored copy of the
result of a whole-subfile search for a particular
parent key value.

Method 5:

ptr2=CCLIST(plex,scfnptr) ;

It is like method 4 repeated for all the keys in a

PAGE 29

Index list with the results all CRed together; It
produces a Complete Children List.

Method 6:

ptr2=CPLIST(plex,ptr1) ;
or
ptr2=UPLIST (plex,ptrl) ;

It reads all the subrecords in a list getting the
parent key field from each one and merging the
parent keys into the output list. The Unique
Parent List function drops duplicate parent keys;
Complete Parent List does not.

Method 7:

ptr2=NULL;
-- >DB(fGET LIST(ptrl) KEY <(n)> INTC (var);))
I EE((GET LIST(ptrl) KEY SET(ptr2):))

Where the GET KEY SET may or may not be executed
depending on the "var" value. Method 7
essentially handles a special case of method 1
when the "file-positioninq" would be governed by a
given list and only the key field would be gotten
to determine selection; for such a case, method 7
is far more efficient because no record level data
base I/C is needed.

Method 8:

ptr2 = ULIST(ptrl)

It efficiently produces a new list of unique keys
(no duplicates) without any record level data base
I/O.

Method 9:

DB((SET LIST(ptr2) SIZE(dim)
LIKE LIST(ptr) ;))

--- >DB((GET LIST(ptr1) INTERNAL KEY
I INTO(var);))
1-->DB((PUT LIST(ptr2) INTERNAL KEY
It FROM (expr);))
I ---------

It is a very special purpose variation of method
7. It works with unconverted external key values.
If the inner loop is used, it is possible to

PAGE 30

generate more than one key for each GET KEY.
Since the output list may receive a multiple or a
fraction of the nurber of keys in the input list,
a size dimension must be supplied in the SET LIST
LIKE LIST statement estimating the minimum number
of output keys.

Method 10:

ptr3=LIST(ftr1,'9',rtr2):

The LIST function forms a new list in main storage
from two compatible lists in main storage. The
two argument lists remain accessible for further
combination or other use. The LIST function is
used in retrieving for ccmpound queries. Given
two lists, A and B, the LIST operations provided
are illustrated in Figure 2, "Venn Diagram."

When more than two lists have to be combined, the
mainline may use one of the following techniques
(where P is the resultant intersection list):

T1 = LIST (A, '', B);
T2 = LIST (Ti, '&', C);
DB ((FREE LIST (Tl))); /*IF DESIRED HERE*/
R = LIST (T2, '', C);
DB ((FREE LIST (T2))); /*IF DESIRED BERE*/

A second possible technique is:

R = LIST (A, 'E', B);
R = LIST (R, 'F', C);
R = LIST (R, '', D);

A third possible techniaue is:

R = LIST (LIST (A, '9', B), '', LIST (C,
'', D));

The last two techniques do not retain intermediate
lists.

B. List Statements and Functions

#LIST is a PL/I function provided for obtaining
the number of keys in a list. For example, if L
is a pointer identifying a list and S is a
varying-length character string, the following
DO-group would be valid:

PAGE 31

DO I = 1 TO #LIST (1):
DB ((GET LIST (1) KEY INTO (S);)):
PUT SKIP LIST (I, S);
END:;

If it is merely desired to determine if a list has
any elements cr not, the following techniaue is
more efficient than a #LIST function reference:

IF L -= NUIL THEN /* LIST HAS MORE THAN ONE
ELEMENT */;

The GET LIST KEY statement moves a list element
key from a list tc the user's receiving string.
Any conversion from internal to external form is
done automatically. The GET LIST INTERNAL KEY
statement never converts the list element key
value.

The REAE statement with the LIST file positioning
option is used to read the anchor or subfile
record with the next element of a list as its key.
It is more efficient than GET LIST KEY; READ by
KEY because the internal form of the key element
is available for use without conversion.

There are two inderendent "current elements of a
list": the one most recently obtained by a GET
LIST KEY statement and the one most recently used
by any READ statement under control of the LIST.
A key may be referred to sequentially forwards or
tackwards or by its pocsition (subscript) in a
list. The GET or REAL current element counter may
be reset by a GET LIST KEY(O0) or a READ LIST
KEY(O0) statement respectively.

The SET LIST, LIKE LIST, and PUT LIST INTERNAL KEY
statements are for allocating and posting lists
for special purposes.

An explicit FREE LIST statement frees the storage
and NULLs the pointers for the lists specified. A
general FREE LIST statement frees all current
lists but does not NULL any pointers.

The ON LISTERROR statement is used to establish a
user's list exception routine in the mainline to
which the list processing rcutines return when an
exceptional list condition occurs (e.q.,
attempting to combine incompatible lists). Use of
the statement is optional and several ON LISTERROR
statements may be executed in a program.

PAGE 32

A "list exception routine" must beoin with a
statement label (the same label identifier
specified in an ON statement). PL/I (or DBPL/I)
statements may be written following the label to
handle the exceptional condition. These
statements may reference a binary integer field
named LISTER. ONCOrE (declared automatically by
the DB preprocesscr) for assistance in determining
the exceptional condition.

A list exception routine may be terminated in any
manner; no provision is made for returning to the
function reference that raised the exceptional
condition.

VII. RULES AND SYNTACTIC DESCRIPTICNS

The syntax notation used in this manual is a subset of
that used in the OS PL/I Beference Manual (Form
C28-8201-0) and specified in Section A thereof.

1. A notation variable is shown in lower case
letters, hyphens and, possibly, a digit. All such
variables shown are defined in this manual either
syntactically or semantically.

2. A notation constant denotes the literal occurrence
of the characters shown. It consists either of
all capital letters or cf a special character such
as a colon, percent sion, parenthesis, comma or
semicolcn.

3. Braces, 3{ , denote that a choice is to be made.

4. Corner brackets, <> , denote options. Anything
enclosed in brackets may appear one time or may
not appear at all.

5. The vertical stroke, I , indicates that a choice
is to be made.

6. An ellipsis, ... , denotes that the contents of
the preceding brackets may optionally occur more
than once in succession.

PAGE 33

'The CCLIST Function'

Complete Children LIST builds a list of subrecord keys from
a given parent key list, for a particular subtfile, and
returns a pointer value identifying the new list to the
point of invocation. The new list is the complete list of
dependent subrecords (children) formed by merging the parent
record's subfile control field lists. Any previously
current record and subrecords that were updated will be
transmitted to the data base. The record identified by the
last (highest) key in the given list will remain as the
current (but not locked) record; any current subrecords or
index records will remain current. The READ cursor of the
given list will be reset.

Reference:

CCLIST (file-name, ctlfield, parent-list-pointer)

A CCLIST function reference is used as or in an expression;
it is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
CCLIST function; the following statement will be generated
automatically:

DECLARE CCLIST ENTRY (,CRAR(8),PTR) RETURNS (P T R):

Argu ments:

file-name: specifies the data base file from which parent
records are to be transmitted. It may not be an OUTPUT
file. If the file is not open, it will be opened
automatically. The 'file-name' must be used in at least one
DBPL/I statement elsewhere in the prcgram.

ctlfield: is an expression that specifies the name of the
subfile control field. The value of the expression is
converted to a character strina, if necessary, the first
eight characters of which identify tLe control field.

parent-list-pointer: must be a rcinter expression that
identifies a list in main storage of parent keys from the
data base accessed by 'file-name'. It must have been set
when the CCLIST function is invoked.

Result:

The value returned by the CCLIST function is a pointer
identifying the new complete children list. The new list
will be in order of ascending internal subrecord key values
without duplicated values. If none of the parent records
have any dependent subrecords in the subfile, a NULL pointer
value will be returned.

PAGE 34

'The CLOSE Statement'

The CLOSE statement closes a file by disassociating a file
name from the self-describinq data set with which it was
associated by an OPEN. It may also specify that the file be
eras ed.

General Format:

CLOSE FILE (file-name) <ERASE> <,FILE(file-name)
<ERASE>>...;

Syntax Rules:

1. The CLOSE statement must be a subargument in a DB
preprocessor function reference.

2. Several files can be closed by one CLOSE
statement.

General Rules:

1. A closed file can be reopened.

2. Closing an unopened file, or an already closed
file, has no effect unless ERASE is specified.

3. If a file is not closed by a CLOSE statement, it
is automatically closed at the completion of the
program in which it was opened,

4. If the current record and/or subrecords were
LOCATEd or updated, closing will cause them to be
transmitted to the data base, unlocked (if
locked), and disestablished as the current
record(s) of the file.

5. The ERASE specification causes the file to be
erased and uncatalcqued. If the file is a
descriptor fila, the descriptor region is erased.
If the file is an anchor file, the whole data base
but not its descriptors is erased. If the file is
an associated file, a subfile or an index file, it
is erased independently. ERASE is only valid for
an UPDATE file.

PAGE 35

'The CPLIST Function'

Complete Parent LIST builds a complete list of parent record
keys from a given subrecord (children) key list and returns
a pointer value identifying the new list to the point of
invocation. The new list has the same number of parent keys
as the number of subrecord ID keys in the given list.
Parent keys will be repeated if mcre than one of the given
subrecord keys are dependent on a particular parent
record. The subrecord identified by the last (hiqhest) key
in the given list will remain as the current (but not
locked) subrecord of that subfile: any current or index
records or subrecords of other sutfiles will remain current.
The READ cursor of the qiven list will be reset.

Reference:

CPLIST (file-name, child-list-pointer)

A CPLIST function reference is used as or in an expression;
it is not to be a suharqument in a EE preprocessor function
reference. The user may not declare any attributes for the
CPIST function; the following statement will be generated
automatically:

DECLARE CPLIST ENTRY(,PTR) RETUFNS(PTW);

Arguments:

file-name:specifies the data tase file from which subrecords
are to be transmitted. It may not be an OUTPUT file. If
the file is not open, it will be opened automatically. The
file-name must be used in at least one DEFL/I statement
elsewhere in the program.

child-list-pointer: must be a Tointer expression that
identifies a list in main storage of subrecord keys from the
data base accessed by file-name. It must have been set when
the CPLIST function is invcked.

Result:

The value returned by the CPLIST function is a pointer
identifying the new complete parent list. The new list will
be in order of ascending internal parent key values and may
have repeated values. If the qiven subrecord list is null,
a IULL pointer value will be returned.

PAGE 36

'The DB Preprocessor Function'

DB analyzes a DEPL/I data base access statement during
compilation and generates, in its place, suitable PL/I
statements for communicaticn with DBPAC. Diagnostic
comments may also be generated.

Reference:

<label:>. .. DB ((<<label: ... subarqument > ...))

1. One % INCLUDE (DE) preprocessor statement must
have been executed by the FI/I compiler before any
DB preprocessor function reference is made in a
compilation.

2. Several DB preprocessor function references may be
made in a compilaticn.

3. A DB preprocessor function reference may be made
only between PL/I statements.

4. When a single DBPI/I statement is to be used as
the THEN-unit or ELSE-unit of a PL/I IF statement,
the unit must be a PL/I DO-END oroup enclosing the
DB preprocessor function reference.

5. One or more label prefixes may precede a DB
preprocessor functicn reference. They will
identify the first executable statement generated
for the first subargument.

6. One FINISH statement must be executed by the PL/I
compiler as the last sutarqument of the last DB
preprocessor functicn reference after all other DB
preprocessor function references in a
compilation.

Argument:

1. The argument of a rE preprocessor function
reference is a character string delimited by
double enclosing parentheses. Several
subarguments can arpear in the argument. Each
must be a data base access statement having its
own terminating semicclon. Blanks and comments
may be used freely, as in PL/I, but no PL/I
statements are permitted.

2. One or more label prefixes may precede a
subargument. They will identify the first
executable statement generated for the

PAGE 37

subarqument.

PAGE 38

'The DUPLIST Function'

DUPLIST builds, in dynamically allocated main storage, a
compressed copy of a list of keys and returns a pointer
value identifying the new list to the point of invocation.

Reference:

DUPLIST(list-pointer)

A EUPLIST function reference is used as or in an expression;
it is not to be a subargument in a EB preprocessor function
reference. The user may not declare any attributes for the
DUPLIST function; the following statement will be generated
automatically:

DECLARF DUPLIST ENTRY(POINTER) FETUNS(POINTER);

Arg ment:

list-pointer: must be a pointer expression that identifies a
list of keys in main storage. It must have been set when
the DUPLIST function is invoked.

Result:

The value returned by the DUPLIST function is a pointer
identifying the compressed list copy. A compressed list has
none or more list segments of raximum size followed by the
last or only list segment allocated to exact length for the
remaining keys and all segments are exactly filled; thus, it
occupies the least possible main storage.

PAGE 39

'The #FIELD Function'

#FIELD calculates the number of elements in a field in the
current record or subrecord of a file and returns it to the
point of invocation.

Reference:

#FIELD (file-name, field-name)

A #FIELD function reference is used as or in an expression;
it is not to be a subargument in a EF preprocessor function
reference. The user may not declare any attributes for the
#FIELD function; the followinq statement will be generated
auto matically:

DECLARE #FIELD ENTRY (,CHARACTEF (8)) BETURNS (FIXED
BIN (31);

Arguments:

file-name: identifies a data base file. It may not be an
OUTPUT file. A current record or sutrecord of the file or
a subfile must have been established by a DBPL/I READ
statement when the #FIELD function is executed. Several
#FIELD function references may be executed on a current
(sub)record of a file.

field-name: is an expression that specifies the name of the
data base field to be examined. The value of the expression
is converted to a character strinq, if necessary, the first
eight characters of which identify the field. Any field may
be examined.

Result:

The value returned by the #FIELD function is a binary
integer of maximum precision qiving the number of elements
in the field in the current (sub)record of the file. If the
field has a null value, a zerc value will be returned.

PAGE 40

'The FINISH Statement'

The FINISH statement causes the DE preprocessor to complete
its analysis of all data base access statements and its
generation of suitable PL/I statements. A RETURN Statement
will be generated which will terminate execution of the
procedure. A CLCSF is also generated for those file-names
utilized by the compilation. Diagnostic comments may also
be generated.

General Format:

FINISH;

Syntax Rule:

One FINISH statement must be used after all other data
base access statements in a ccmpilation. It must be
the last subargument in a DB preprocessor function
reference.

PAGE 41

'The FREE LIST Statement'

The TREE LIST statement frees rain stcrage previously
dynamically-allocated for one or more lists of
(cross-reference) keys.

General Format:

FREE LIST <(list-pointer<,list-pocinter> ...)>;

Syntax Rules:

1. The FREE LIST statement must be a subargument in a
DB preprocessor function reference.

2. Several lists may be explicitly freed by one FREE
LIST statement.

General Rules:

1. If a list-pointer is explicitly specified, it must
be a pointer expression that identifies a list of
keys in main storace. It must have been set when
the FREE LIST statement is executed.

a. If the value of the list-pointer is NULL, no
action will be taken for that list pointer.

b. If the value of the list-pointer is not NULL,
the dynamic main storage for the list of keys
identified by it will be freed and the
list-pointer will be given a NULL pointer
value.

c. FREE LIST will ignore a pointer which
addresses a list which has been posted in
SEYAB and assiqned a set number. No action
will be taken.

2. If no list-pointer is explicitly specified in the
FREE LIST statement, all dynamic list storaqe will
be freed. The user's list pointers are not given
NULL values; it is the user's responsibility not
to use them for list identification until they are
reset. If no dynamic list storaae has been
previously allocated, this option of the FREE
LIST statement will have no effect.

PAGE 42

'The GET FIELD Statement'

The GET FIELD statement moves a data element value from the
current record or subrecord of a file to the user's
receiving field; it may cause the value to be converted from
an internal form to a display form.

General Format:

GE FILE (file-name) FIELD (field-name <, field-name> ...)
INTO (variable <, variable 2 ...)

Syntax Rules:

1. The GET FIELD statement must be subargument in a
DB preprocessor function reference.

2. Several data element values can be moved by one
GET FIELD statement. In this case, a
corresponding variable must be specified for each
field name.

General Rules:

1. The data element value will be taken from the data
base file specified in the FILE clause. It may
not be an OUTPUT file.

2. A current record or subrecord of the file or a
subfile must have been established by a READ
statement when the GET statement is executed.
Several GET FIELD statements may be executed on a
current (sub)reccrd of the file.

3. The field-name is an expression that specifies the
name of the data base field from which the data
element value is to be obtained. The value of the
expression is converted to a character string, if
necessary, the first eight characters of which
identify the field. If the user who executes the
GET FIELD statement is not the owner of the file,
the field-name may not specify a field that the
owner has not authorized the user to GET.

a. If the field is not subdivided into elements,
the data element value (possibly null) will
be taken from the field in the current record
of the file.

b. If the field is a multiple-element field, the
data element value will be taken from the
next element of the field, in left to right
order, following the element taken by the

PAGE 43

previous GET cf the FIELD of the current
record of the file. If there has been no
previous GET of the FIELD since the record
was READ, the leftmost element is taken
unless the field is null, in which case, a
null element value will be generated. If a
previous GET of a FIELE since the record was
BEAE took the last (rightmcst) element, a
null value will be generated.

4. The variable in the IWIC clause specifies the
user's receiving field. It must be the identifier
of a varvina lenqth character string variable
declared by the user. The internal form of the
data element value will be taken as a varvinq
length character string (cf zero length, if the
value is null), ccnverted to display form and
assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 44

'The GET INDEX KEY Statement'

The GET INDEX KEY statement moves the key value from the
current record of an index to the user's receiving field; it
may cause the value to be converted from an internal form to
a display form.

General Format:

GET FILE (file-name) INDEX (indfield) KEY INTC (variable);

Syntax Rule:

The GET INDEX KEY statement must be a subargument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which an index key value is tc be taken. It may
not be an OUTPUT file.

2. The INDEX clause specifies the index file from
which the current index key value is to be taken.
The indfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the indexed field.

3. A current record of the index must have been
established by a READ INEEX statement when the
GET INDEX KEY statement is executed.

4. The variable in the INTC clause specifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
index key value will be taken as a varying length
character string, converted to display form and
assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 45

'The GET KEY SET Statement'

The GET KEY SET statement moves the internal key value from
a current record or subrecord of a file to a list of keys in
dynamically allocated main storage and sets a pointer
identifying the list or extends an existent list.

General Format:

GET FILE (file-name) <SUEFILE (ctlfield)> KEY SET
(list-pointer) ;

Syntax Rule:

The GET KEY SET statement must be a sutargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data tase file from
which a key value is to be taken. It may not be
an OUTPUT file.

2a. If no SUBFILE clause is present, the internal key
value will be taken from the current root
record.

t. A SUBFILE clause specifies that the internal key
value from a current sutreccrd is to be taken.
The ctlfield expression value is converted to a

character string, if necessary, the first eight
characters of which identify the control field.

3. A current tsub)reccrd must have been established
by a READ or READ SUBFILE statement when the GET
KEY SET statement is executed.

4. The list-pointer in the SET clause specifies the
user's pointer identifying the list of keys in
main storage. It must be the identifier of a
pointer variable declared by the user.

4a. If the user assigns the NULL value to his
list-pointer before executing the GET KEY SET
statement, main storage will be dynamically
allocated automatically for a new list, the key
value will be moved there from the current

(sub)record, and the list-pointer value will be
set to identify the list in main storage. The

list remains allocated in main storage until the
user executes a FREE LIST statement.

PAGE 46

b. Otherwise, the list-Tointer should identify a list
of keys in main storaqge to which another
compatible key value is tc be appended. It must
have been set (by the user assigning NULL and
executing a GET KEY SET statement as described
above) when this GET KEY SET statement is
executed. The key value will be moved from the
current (sub)record. The list-pointer will be
unchanged.

PAGE 47

'The GET LIST INTERNAL KEY INTO Statement'

The GET LIST INTERNAL KEY INTO statement increments the
internal GET cursor of a list of keys in main storage
identified by a list pointer and roves the indicated key
value in internal form to the user's receiving field.

General Format:

GET LIST (list pointer) INTENAI KEY INTC (variable);

Syntax Rule:

The GET LIST INTERNAL KEY INTC statement must be a
subargument in a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage from
which the next key value is to be taken. It must
have been set when the GET LIST INTERNAL KEY INTO
statement is executed. In the exceptional case of
a list pointer having a NULL pointer value, a null
string value will be generated.

2. The internal GET cursor of the list will be
incremented to indicate that the next element of
the list, in order of ascending internal key
values, is current and will be taken. (If the
internal GET cursor was reset, the element having
the lowest internal key value is current and will
be taken. If the internal GET cursor was on the
last element (highest internal key value), the
cursor will be reset and a null string value will
be generated.)

3. The variable in the TNTO clause specifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
key value will be taken as a varying length
character string (cf zero length on end of list)
and assigned without formatting to the variable.
If the length of the internal form of the value
exceeds the user-declared raximum length of the
variable, the value will be truncated and an error
condition raised.

PAGE 48

'The GET LIST KEY(O) Statement'

The GET LIST KEY(O) statement resets the internal GET cursor
of a list of keys in main storage.

General Format:

GET LIST (list-pointer) KEY(O);

Syntax Rule:

The GET LIST KEY(O) statement must be a subargument in
a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage whose
GET cursor is to be reset. The list-pointer must
have been set when the GET LIST KEY(O) statement
is executed. In the exceptional case of a
list-pointer having a NULL pointer value, no
action will occur and no error condition will be
raised.

2. The internal GET cursor of the list will be reset
(as it was when the list was built).

PAGE 49

'The GET LIST KEY INTO Statement'

The GET LIST KEY INTO statement increments or sets the
internal GET cursor of a list of keys in main storage
identified by a list pointer and moves the indicated key
value to the user's receiving field; it may cause the value
to be converted from internal to display form.

General Format:

GET LIST (list-pointer) KEY <(rel-key)> INTO (variable);

Syntax Rule:

The GET LIST KEY INTO statement must be a subargument
in a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage from
which the key value is to be taken. It must have
been set when the GET LIST KEY INTO statement is
executed. In the exceptional case of a list
pointer having a NUIL pointer value, a null string
value will be generated.

2a. If no rel-key is specified, the internal GET
cursor of the list will be incremented to indicate
that the next element of the list, in order of
ascending internal key values, is current and will
be taken. (If the internal GET cursor was reset,
the element having the lowest internal key value
is current and will be taken. If the internal GET
cursor was on the last element the cursor will be
reset and a null string value will be generated.)

t. If a rel-key expression is specified, its value
will be converted, if necessary, to a fixed binary
integer of maximum precision.

If rel-key has a negative value, such as -1, the
internal GET cursor of the list will be
decremented to indicate that the previous element
of the list, in order of internal key values, is
current and will be taken. (If the internal GET
cursor was reset, the element havina the highest
internal key value is current and will be taken.
If the internal GET cursor was on the first
element, the cursor will be reset and a null
string value will be generated.)

If rel-key has a positive value, the internal GET

PAGE 50

cursor of the list will be set to indicate that
rel-key the relative element cf the list is
current and will be taken. (If rel-key is zero or
greater than the number of keys in the list, the
cursor will be reset and a null string value will
be generated.)

3. The variable in the INTO clause specifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
key value will be taken as a varying length
character string ccnverted to display form and

assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 51

'The GET LIST KEY SET Statement'

The GET LIST KEY SET statement moves the current internal
key value from a list of keys identified by a list pointer
to a new list in dynamically allocated main storage and sets
a rointer identifying the nev list or extends an existent
list.

General Format:

GET LIST (list-pointer) FEY SET (new-list-pointer);

Syntax Rule:

The GET LIST KEY SET statement must be a subargument in
a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage having a
non-zerc GET cursor indicating a current key.

2. The internal key value will be taken from the
current element of the list indicated by the
internal GET cursor. The GET cursor will be
unchanged.

3. The new-list-pointer in the SET clause specifies
the user's pointer identifying the new list of
keys in main storage. It must be the identifier
of a pointer variable declared by the user.

3a. If the user assigns the NUIL value to his
new-list-pointer before executing the GET LIST KEY
SET statement, main storage will be dynamically
allocated automatically for a new list, the key
value will be moved there, and the
new-list-pointer value will be set to identify the
new list in main storage. The new list remains
allocated in main storage until the user executes
a FREE LIST statement.

3b. Otherwise, the new-list-pointer should identify a
list of keys in main storage to which another
compatible key value is tc be appended. It must
have been set when this GET LIST KEY SET
statement is executed. The key value will be
moved and the new-list-pointer will be
unchanged.

PAGE 52

'The GET LIST SET Statement'

The GET LIST SET statement moves a list of keys from the
current record of an index cr from a subfile control field
in the current root record to dynamically allocated main
storage and sets a pointer identifying it.

General Format:

GET FILE(filename) <INEX(indfield)>LIST SET (list-pointer)
<SUBFILE(ctlfield)>

Syntax Rule:

The GET LIST SET statement must be a subargument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which the list of keys is tc be taken. It may not
be an OUTPUT file.

2a. If an INDEX clause is specified, a current index
record rust have been established by a READ INDEX
statement when the GET INDEX LIST SET statement is
executed. The INDEX clause specifies the index
file from which the list of (cross-reference) keys
is to be taken. The indfield expression value is
converted to a character string, if necessary, the
first eight characters of which identify the
indexed field.

2b. If a SUEFILE clause is specified, a current root
record must have been established by a READ
statement when the GET lIST SET statement is
executed. The ctlfield expression value is
converted to a character string, if necessary, the
first eight characters of which identify the
control field from which the list of keys
(children) is to be taken. If the user who
executes the GET SUBFILE LIST SET statement is not
the owner of the file, the ctlfield may not
specify a control field that the owner has not
authorized the user to GET.

2c. If neither an INDEX nor a SUEFILE clause is
specified, the FILE must be an INPUT file opened
with a TITLE for independent access to a
particular inverted index file and a current
record must have been established by a READ
statement when the GET lIST SET statement is
executed. The list of (cross-reference) keys will

PAGE 53

be taken.

3. The list-pointer in the SET clause specifies the
user's pointer to be set to identify the list of
keys in main storage. It must be the identifier
of a pointer variable declared by the user.

a. If the list of keys field of the current
record is null, the list-pointer will be
given a NULL pcinter value. (This occurs for
the SUBFILE case when the control field is
null indicating nc subordinate (children)
subrecords.)

b. Otherwise, main storage will be dynamically
allocated autcratically for the list, the
list of keys will be moved there from the
current record, and the list-pointer value
will be set to identify the list in main
storage. The list remains allocated in main
storage until the user executes a FREE LIST
statement.

PAGE 54

'The GET RECORD Statement'

The GET RECORD statement moves a physical record in internal
form from the current record of a file to the user's
receiving field.

General Format:

GET FILE (file-name) RECCRD INTO (variable);

Syntax Rule:

The GET RECORD statement must be a subarqument in a DB
preprocessor function reference.

General Rules:

1. The physical record will be taken from the current
record of the file specified in the FILE clause.
It must be an UPDATE or INPUT file owned by the
user who executes the GET RECORD statement.

2. A current record of the file must have been
established by a READ statement when the GET
statement is executed. Several GET statements may
be executed on a current record of the file.

3. The variable in the INTO clause specifies the
user's receiving field. It must be the identifier
of a structure or fixed-length character string
variable declared by the user. The internal
self-defining physical record will be moved into
the variable without any ccnversion. No receiving
field length checking will be done. (A GET FIELD
'RECLEN' statement rav be used for this purpose.)

PAGE 55

'The % INCLUDE LISRMAC (DB) Preprocessor Statement'

The % INCLUDE LISMAC (DB) rreprocesscr statement causes the
text of the DB preprocessor function tc be taken from the
system source litrary during compilation, incorporated in
the source program and activated.

General Format:

% INCLUDE LISRMAC (DB);

Syntax Rule:

Only one % INCLUDE DE preprocessor statement may be
used in the source text for a compilation. It must
immediately follow the beginning PEOCEDUPE statement,
before any other statements, if the compilation
contains DB preprocessor functicn references for data
base access statements.

PAGE 56

'The LIST Function'

LIST derives a new list of (cross-reference) keys from two
given lists of keys and returns a pointer value identifying
the new list to the point of invocation. The new list may
be the union or intersection of the given lists or the
sutlist of the first given list excluding the second.

Reference:

LIST (list-pointer-1, operator, list-pointer-2)

A LIST function reference is used as or in an expression; it
is not to be a subarqument in a EF preprocessor function
reference. The user may not declare any attributes for the
LIST function; the followina statement will be generated
automatically:

DECLARE LIST ENTRY (POINTER, CHABACTEP(1), POINTER)
RETUPNS(POINTER);

Arguments:

Each of the two list-pointer arguments mrst be a pointer
exression that identifies a list of keys in main storace.
Each must have been set when the LIST function is invoked.
The lists of keys identified must be compatible (having the
same internal key element length, etc.).

The operator argument is an expressicn that specifies the
list operation tc derive the new list. The value of the
operator will be converted, if necessary, to a one-character
string. The value must be:

logical OR, ',*, specifying the union,

logical AND, 'c', specifying the intersection, or

minus sign, '-', specifying the sublist of the first
list excluding the second list.

Result:

The value returned by the LIST function is a pointer
identifying the new list. The new list will be in order of
ascending internal key values without duplicated key values
(unless there are duplicates in one of the argument lists).
If the new list is null, the value returned may be assigned
to one of the argument list pointers; however, the argument
list would then be lost to the mainline (unless the user had
assigned its pointer value to another pointer previously)
and could not be explicitly freed (but FREE LIST; would free
it and all other lists).

PAGE 57

'The #LIST Functicn'

#LIST calculates the number of (crcss-reference) ieys in a
list of keys identified by a list pointer and returns it to
the point of invocation.

Reference:

#LIST (list-pointer)

A #IIST function reference is used as or in an expression;
it is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
#LIST function; the following statement will be generated
au tomatically:

DECLARE #LIST ENTRY (PCINTER) RETURNS (FIXED
BINARY(31));

Argument:

The list-pointer argument must be a pointer expression that
identifies a list of keys in main storage. It must have
been set when the #LIST function is invoked.

Result:

The value returned by the #LIST function is a binary integer
of maximum precision giving the number of keys in the list
identified by the list-pointer argument. If the
list-pointer has a NULL pointer value, a zero value will be
returned.

PAGE 58

'The LOCATE Statement'

The locate statement, which aprlies to OUTPUT or DIRECT
UPEATE files, causes formation of a new current record
having a key field and having all other fields null; it may
also cause transmission of the Previously current record to
the data base.

General Format:

LOCATE FILE (file-name) KEYFROM (expression) ;

Syntax Rule:

The LOCATE statement must be a subarqument in DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file to
which the record is to be subsequently
transmitted. It must te owned by the user who
executes the LOCATE statement. It may not be an
INPUT or SEQUENTIAL UPDATE file.

2. If the file is not open, it is opened
automatically.

3. The value of the expression in the KEYFROM clause
is converted to a varying length character string,
if necessary, validated and/or converted to an
internal form.

a. If the file has the SEQUENTIAL OUTPUT
attributes, the internal key is checked for
ascending sequence and subsequently used as
the key of the record when it is transmitted
to the data base.

b, If the file has the DIRECT attribute, a READ
KEY is attempted usinq the internal key. If
the key is found, a duplicate key error
condition is raised and the LOCATE statement
has the effect of the READ KEY statement. If
the key is not found, it is subsequently used
as the key of the record when it is
transmitted to the data base.

4., After execution of the LOCATE statement,
subrecords may be IOCATEd and values may be PUT
into fields (other than the key) of the record for
subsequent transmission to the data base, which
will occur immediately before the next LOCATE,

PAGE 59

READ, CLOSE or automatic close operation on the
file.

PAGE 60

'The LOCATE SUBFILE Statement'

The LOCATE SUBFILE statement causes formation of a new
current subrecord having a key field and a parent keyfield
and having all other fields null; it also causes the new key
to be automatically entered in the parent record control
field; it may also cause transmission of the previously
current subrecord of the subfile.

General Format:

LOCATE FILE (file-name) SUBFIE (ctlfield);

Syntax Rule:

The LOCATE SUEFILE statement must be a subargument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file to
which the subrecord is to be subsequentlv
transmitted. It must be cwned by the user who
executes the LOCATE SUEFILE statement. It may
not be an INPUT file.

2. A current record of the file must have been
established when the LOCATE SUBFILE statement is
executed. Several LOCATE SUEFIIE statements for
one or more subfiles may be executed on a current
record of the file.

3. The ctlfield is an expression that specifies the
name of the subfile control field. The value of
the expression is converted to a character string,
if necessary, the first eight characters of which
identify the control field.

4. After execution of the ICCATE SUEFILE statement,
values may be PUT into fields of the subrecord for
subsequent transmission to the data base, which
will occur immediately before the next LOCATE
SUBFILE or READ SUBFILE on this subfile or before
the next CLOSE or automatic close on the file.

PAGE 61

'The CN Statement'

The ON statement specifies what action is to be taken when
an interruption results from the occurrence of the specified
error condition.

General Format:

ON <ERRORFILE(file-name)> <SYSTEM > :
<LISTERBOR > <GC 1O label>

Syntax Rule:

The ON statement must be a subaroument in a DB
preprocessor functicn reference.

General Rules:

1. The ON statement determines how an error occurring
for the specified condition is to he handled.
Whether the error is handled in the standard DB
fashion or by a user-supplied method is determined
by the action specificaticn in the ON statement,
as follows:

a. If the action specification is SYSTEM, the
standard DE action is taken. For most
conditions, the system simply posts the
ONCCDE field and raises the ERROR condition.
(Ncte that the standard DB action is always
taken if an interruption occurs and no ON
statement for the condition is in effect.)

b. If the action specification is GO TO, the
user has supplied his own error-handling
action at label. Control is not transferred
to label when the ON statement is executed;
control is transferred only when an error
results from the occurrence of the specified
condition.

2. The action specification established by executing
an ON statement remains in effect unless it is
over-ridden by the execution of another ON
statement specifying an action for the same
condition.

PAGE 62

'The OPEN Statement'

The OPEN statement opens a file by associating a file name
with a DATA BASE. It may also specify attributes for the
file.

General Format:

OPEN FILE (file-name) <TITLE (expression)> <access>
<function>
<,FILE(file-name) <TITLE(expressicn)> <access>

<function>>...,

where "access" is:
DIRECT I SEQUENTIAL

and "function" is:
INPUT I OUTPUT I UPDATE

Syntax Rules:

1. The OPEN statement rust be a subargument in a DB
preprocessor functicn reference.

2. Several files can be opened by one OPEN
statement.

General Rules:

1. If a file is not opened by an OPEN statement, it
is automatically opened when a READ or LOCATE
statement for the file is first executed.

2. Opening an already opened file by an OPEN
statement causes it to he closed and reorened.

3. If the TITLE option is specified, the value of the
expression is converted to a character string the
first eight characters of which identify the data
base to be associated with the file. If the TITLE
option is not specified, the file-name is taken
to identify the data base.

4. If no access attribute is specified, DIRECT is the
default unless a WFITE statement on the file is
used in the same compilation, thus implying the
SEQUENTIAL attribute.

5. If a function attribute is specified, it
determines the direction of data transmission
permitted for the file. If no function attribute
is specified, it is implied from the usage of
other data base statements cn the same file in the

PAGE 63

compilation (9.g., REPUT implies UPDATE). If no
other data base statements cn the same file appear
in the compilation, the default is INPUT. The
only user permitted to access and OUTPUT or UPDATE
file is the owner of that file.

PAGE 64

'The PUT FIELD Statement'

The PUT FIELD statement moves a data element value to the
current record cr subrecord of a file for subsequent
transmission to the data base; it may cause the value to be
validated and/or ccnverted to an internal form and it may
also cause a cross-reference to be automatically entered in
an index file.

General Format:

PUT FILE (file-name) FIELD (field-name<,field-name> ...)
FROM (expressicn<, expression> ...)

Syntax Rules:

1. The PUT FIELD statement must be a subargument in a
DE preprocessor functicn reference. 'The READ
Statement'

2. Several data element values can be moved by one
PUT FIELD statement. In this case, a
corresponding expression must be specified for
each field-name.

General Rules:

1. The FILE clause specifies the data base file to
which the data element value is to be subsequently
transmitted. It must be an OUTPUT or UPDATE file
owned by the user who executes the PUT statement.
It may not be an associated file or an index
file.

2. A current exclusive record or subrecord (depending
on the field-name) of the file or subfile must
have been established when the PUT statement is
executed. Several PUT statements may be executed
on a current exclusive (sub)record of the file.

3. The field-name is an expression that specifies the
name of the data tase field into which the data
element value is to be moved. The value of the
expression is converted to a character string the
first eight characters cf which identify the
field. The field-name may not specify the key
field of the record or any cther read only field.
The PUT statement moves a value to a field element
that had no previcus value.

a, If the field is not subdivided into elements,
it must have had a null value before the PUT
statement is executed to give it a value.

PAGE 65

b. If the field is a multiple-element field, a
new element will be added at the right end of
the field.

4. The expression in the FRCM clause specifies the
data value to be given to the field element. The
value of the expression is converted to a varving
length character string, if necessary, validated
and/or converted tc an internal form and moved
into the current record of the file. (If the data
base field element is variable-length, other
fields are automatically shifted to make room.)
The varying length character strina value after
any conversion to an internal form must have a
length greater than zero; i.e., a null string is
an invalid data value for a PUT statement.

5. If the data base field has an inverted index file,
a cross-reference of the internal data element
value to the key of the (sub)record will be
automatically entered in the inverted index
file.

6. The (sub)recor with the new data element value
will be transmitted to the data base when an
UNLOCK statement for the (sub)file is executed or
immediately before the next LCCATE or READ on the
(sub)file or immediately before the next CLOSE or
automatic close operation on the file.

PAGE 66

'The PUT LIST INTERNAL KEY FRCM Statement'

The PUT LIST INTERNAL KEY FON statement moves an internal
key value to extend a list of keys in main storage.

General Format:

PUT LIST (list-pointer) INTERNAl KEY FROM fexpression
<,expression>...);

Syntax Rules:

1. The PUT LIST INTERNAL KEY FFCM statement must be a
subarqument in a DB preprocessor function
reference.

2. Several internal key values can be moved by one
PUT LIST INTERNAL KEY FROM statement.

General Rules:

1. The list-pointer in the LIST clause specifies the

user's pointer identifying the list of keys in
main storage to which the internal key value is to

be moved. It must have been set when the PUT LIST
INTERNAL KEY FROM statement is executed. In the
case of a list pointer having a NULL pointer
value, a list error condition will be raised.

2. The expression in the FRCM clause specifies the
internal key value to be moved to the list. The
value of the expression is converted to a varying
length character string which must be the same
length as the list element size. If the length is
different or zero (null) an error condition will
be raised.

PAGE 67

'The READ Statement'

The READ statement causes a parent record or a subrecord to
be transmitted from the data base and established as the
current record of the file (cr as the current subrecord of
a subfile); it may also cause transmission of the previously
current record (or subrecord of a subfile) to the data
base.

*When READing according to a lIST of subrecord ID keys.

General Format:

READ FILE (file-name) <file-pcsitioninq> <NOLOCK>;

where file-positioning may be:

KEY(expression) I
LIST(list-pointer) <KEY (rel-key)> I
PER SUBFILE (ctlfield)

Syntax Rule:

The READ statement must be a subargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which the record is to be transmitted. It may not
be an OUTPUT file.

2. If the file is nct open, it will be opened
automatically unless PER SUEFILE is specified.

3a. If no file positioning option is specified, the
next sequential record , following the one
previously read, will be transmitted. If the file
is newly opened, the record having the lowest
internal key value will be transmitted.

b. If the KEY file-positioning opticn is specified,
the value of the expression will be converted to a
varying length character string, validated and/or
converted to an internal form and used to
determine which record will be transmitted. If
the key cannot be found, a key error condition
will be raised, but the record having the next
lower internal key value will be transmitted.

c. If the IIST file-positicninq option is specified,
the file may not be an index file. The
list-pointer must be a pointer expression that

PAGE 68

identifies a list of anchor or subrecord keys in
main storage to control the READing. It must have
been set when the READ statement is executed.
The keys in the file list identified must be
compatible with the internal anchor keys of the
file, or with the subrecord keys of one of its
subfiles. In the latter case the list determines
which subfile will be accessed for a subrecord to
be made current. In the case of a list-pointer
having a NULL pointer value, a key error condition
will be raised and no record will be
transmitted.

If the LIST clause is not followed by a KEY
clause, the internal REAL cursor of the list will
be incremented to indicate that the next element
of the list, in order of ascending internal key
values, will be used to determine which
(sub)record will be transmitted. (If the internal
READ cursor was reset, the element having the
lowest internal key value will be used. If the
internal READ cursor was cn the last element, the
cursor will be reset, a key error condition will
be raised, and no (sub) record will be
transmitted.)

If the lIST clause is followed by a KEY clause,
the value of the rel-key expression will be
converted to a fixed tinary integer of maximum
precision.

If rel-key has a value of zero, the internal READ
cursor cf the list will be reset. No (sub)record
will be transmitted and no error condition will be
raised.

If rel-key has a negative value, such as -1, the
internal READ cursor of the list will be
decremented to indicate that the previous element
of the list, in crder of internal key values, will
be used to determine which (sub)record will be
transmitted. (If the internal PEAD cursor was
reset, the element having the highest internal key
value will be used. If the internal READ cursor
was on the first element the cursor will be reset,
a key error condition will be raised, and no
(sub)record will be transmitted.)

If rel-key has a pocsitive value the internal READ
cursor of the list will be set to indicate that
the element in the rel-key positicn of the list
will be used to determine which (sub)record will
be transmitted. (If rel-key is greater than the

PAGE 69

number of keys in the list, the cursor will be
reset, a key error condition will be raised, and
no (sub)record will be transmitted.)

d. If the PER SUEFILF file-positioninq option is
specified, the parent record of a current
subrecord will be transmitted. The value of the
ctlfield expressicn will be converted to a
character string the first eight characters of
which identify the subfile control field. A
current subrecord of the subfile must have been
established by a READ SUBFIIE statement when the
REAE PE~ SUFILE statement is executed. The
internal parent key field value on the subrecord
will be used to determine which record will be
transmitted.

e. No KEYTO option is provided. A GET FIELD
statement, followinq a READ statement, may be
used for this purpose.

4. Any READ statement referrina to an UPDATE file
will cause the record to te lccked for exclusive
use unless the NCIOCK option is specified. A
locked record cannot be REPD by any other task
until it is unlocked. Any attempt to READ a
record locked by another task results in a wait.
Subsequent unlocking is accomplished by the
locking task through the execution of an UNLOCK,
READ, LOCATE, CLOSE or implicit close operation on
the file.

PAGE 70

'The READ INDEX Statement'

The READ INDEX statement causes an index record to be
transmitted from the data base and established as the
current record of the index.

General Format:

REID FILE (file-name) INDEX (indfield) <index-positioning>;

where index-positioning may be:

KEY(expression)

Syntax Rule:

The READ INEEX statement must be a sutargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data tase file from
which an index record is to be transmitted. It
may not be an OUTPUT file.

2. If the file is rot open, it will he opened
automatically.

3. The INEEX clause specifies the index file from
which the index record is to be transmitted. The
indfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the indexed field.
If the user who executes the READ INDEX statement
is not the owner of the file, the indfield may not
specify a field that the owner has not authorized
the user to GET.

4a. If no index-positioning option is specified, the
file must be an INPUT file. The next sequential
index record, follcwing the one previously read,
will be transmitted. If the index file has not
been previously read, the record having the lowest
indexed field value will be transmitted.

b. If the KEY index-pcsitioning option is specified,
the file may be an INPUT or UPDATE file. The
value of the expression will te converted to a
varying length character string, if necessary,
validated and/or converted to an internal index
key form and used to determine vhich index record
will be transmitted. If the key cannot be found,
a key error will be raised, but the index record

PAGE 71

having the next lower internal index key value
will be transmitted.

c. No KEYTO option is provided. A GET INDEX KEY
statement, following a REAt INDEX statement, may
be used for this purpose.

5. A READ INDEX statement never locks an index record
for exclusive use.

PAGE 72

'The READ SUBFILE Statement'

The READ SUBFILE statement causes a subrecord to be
transmitted from the data base and established as the
current subreccrd of the subfile.

General Format:

READ FILE (file-name) SUEFILE(ctlfield)<subfile-positioning>
<NOLOCK>;

where subfile-positioninq may be:

KEY(expression)

Syntax Rule:

The READ SUEFILE statement must be a subargument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which a subrecord will be transmitted. It may not
be an OUTPUT file.

2. If the file is noct open, it will be opened
automatically.

3. The SUBFILE clause specifies the subfile from
which the subreccrd is tc be transmitted. The
ctlfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the subfile control
field. If the user who executes the READ SUBFILE
statement is not the owner of the file, the
ctlfield may not specify a subfile that the owner
has not authorized the user to READ.

4.a If no subfile-positioning option is specified, the
file must be an INPUT file. The next sequential
subrecord following the one previously read, will
be transmitted. If the subfile has not been
previously read, the subrecord having the lowest
subrecord ID key value will be transmitted.

4.b If the KEY subfile-positioninq option is
specified, the file may be an INPUT or UPDATE
file. The value of the expression will be
converted to a varyina length character string,
if necessary, converted from numeric character to
binary (24, 7) internal subrecord key form and
used to determine which subrecord will be

PAGE 73

transmitted. If the su~record key cannot be
found, a key error conditicn will be raised, but
the subrecord having the next lower internal
subrecord key value will be transmitted.

4.c No LIST subfile-positioninq option is provided for
the REAr SUBFILE statement; the regular READ with
LIST file-positionirg may he used for this purpose
because the list determines if and which subfile
is to be accessed.

4.d No subfile-positioning option is provided for
reading the region of subrecords dependent on the
current rcot record; GET SUEFILE IIST SET followed
by READ LIST statements are very flexible for this
purpose.

4.e No KEYTO option is provided. A GET FIELD
statement, following a READ statement, may be
used for this purcse.

5. A READ SUBFILE statement referring to an UPDATE
file will cause the subrecord to be locked for
exclusive use urless the NC1CCK option is
specified. A locked sutrecord cannot be READ by
any other task until it is unlocked. Any attempt
to BEAD a subrecord locked by another task results
in a wait. Subsequent unlocking is accomplished
by the locking task through the execution of an
UNLOCK SUBFILE, READ SUBFIIE, or LOCATE SUFILE
operation on the sutfile or a CLOSE or implicit
close operation on the file.

PAGE 74

'The REPUT Statement'

The REPUT statement replaces a data element in the current
record or subrecord of an UPDATE file for subsequent
retransmission to the data base; it may cause the value to

be validated and/cr converted to an internal form and it may

also cause a cross-reference to be automatically deleted and

anether entered in an index file. The REPUT statement may
be used to delete a whole record or subrecord and all
cress-references toc it in index files.

General Format:

REFUT FILE(file-name) FIELD(field-name<, field-name> ...)
FROM(expressicn<, exrression> ...)

Syntax Rules:

1. The REPU statement must be a subarqument in a DB
preprocessor functicn reference.

2. Several data element values can be replaced by one
REPUT statement. In this case, a corresponding
expression must be specified for each
field-name.

General Rules:

1. The FILE clause specifies the data base file to
which the data element value is to be subsequently
retransmitted. It must be an UPDATE file owned by
the user who executes the REPUT statement. It may
not be an associated file or an index file.

2* A current exclusive record cf the file must have
been established when the BEPUT statement is
executed. Several REPUT statements may be
executed on a current exclusive record of the
file.

3. The field-name is an expression that specifies the
name of the data base field whose data element
value is to be replaced. The value of the
expression is converted to a character string the
first eight characters of which identify the
field.

a. If the field is the key field of an anchor record,
the expression in the FROM clause must have a null
value (zero length) and the whole root record and
all of its dependent subrecords in all subfiles of
the FILE will be deleted.

PAGE 75

b. If the field is the key field of a subrecord, both
the subrecord and its rarent record must be
current. The expression in the FROM clause must
have a null value (zero length) and the whole
subrecord will be deleted.

c. Otherwise the field-name may not specify a
read-only field.

If the field is not subdivided into elements, its
value will be replaced. If the field is a
multiple-element field, the element taken by the
last GET of the FIELD since the current
(sub)record of the file was PEAD will have its
value replaced. If no element was fpimd fpr tje
GET FIELD or if no GET cf the FIELD of the
current (sub)record of the file was executed, an
error condition is raised.

4. The expression in the FROM clause specifies the
new data value to be aiven to the field element.
The value of the expression is converted to a
varying length character string, validated and/or
converted to an internal form and moved into the
current (sub)record of the file. (If the data
base field element is variahle-lenqth and the new
value's length is different from the old, other
field elements are autcmatically shifted as
necessary.)

5a. If the data base field is the key field of the
anchor record and the expression in the FROM
clause has a null value, all cross-references to
the key of the parent reccrd and its dependent
subrecords will be automatically deleted from all
index files for the file specified in the FILE
clause.

b. If the data base field is the ID key field of a
subrecord and the expression in the FROM clause
has a null value, all crcss-references to the ID
key of the subrecord will be automatically deleted
from all index files for the subfile.

c. If the data base field has an index file, the
cross reference of the old internal data element
value will be automatically deleted, and a
cross-reference of the new internal data element
value to the key of the record will be
automatically entered in the index file.

6. The (sub)record with the new data element value
will be retransmitted to the data base when an

PAGE 76

UNLOCK statement for the (sub)file is executed or
immediately before the next LOCATE or READ on the
(sub) file or iriediately before the next CLOSE or
automatic close operation on the file.

PAGE 77

'The SET LIST LIKE LIST Statement'

The SET LIST LIKE lIST statement dynamically allocates main
stcrage for a new list to later contain an estimated number
of keys, copies the key field name and conversion routine
name etc., from an existing list, and sets a pointer
identifying the new list.

General Format:

SET LIST (new-list-pointer) SIZE (dimension) LIKE LIST
(list-pointer);

Syntax Rule:

The SET LIST LIKE LIST statement must be a subargument
in a DB preprocessor function reference.

General Rules:

1. The list-pointer in the LIKE LIST clause must be a
pointer expression that identifies a list of keys
in main storage to be referenced for prefix
information such as key element length etc. In
the exceptional case of a list pointer having a
NULL pointer value, a NULL pointer value will be
returned.

2. The SIZE clause specifies an estimate of the
number of keys that will subseQuently be put into
the new list. For example, it could be the #LIST
count of the existing list or a multiple of it.
The dimension expression value will be converted,
if necessary, to a fixed binary integer of maximum
precision and used to govern the allocation of the
first segment of the new list.

3. The new-list-pointer in the SET LIST clause
specifies the user's pointer identifying the new
list of keys in main storage. It must be the
identifier of a pointer variable declared by the
user. Regardless of its former value, it will be
set to identify the new list of keys in main
storage. The new list remains allocated in main
storage until the user executes a FREE LIST
statement.

PAGE 78

'The ULIST Function'

ULIST builds a copy of a list of keys omitting duplicated
key values and returns a pointer value identifying the new
list to the point of invocaticn. If The given list has only
unique key values, ULIST returns the given list pointer
without copying the list.

Refe rnece:

ULIST (list-pointer)

A ULIST function reference is used as or in an expression;
it is not to be a subarqument in a EF preprocessor function
reference. The user may not declare any attributes for the
ULIST function; the follcwin statement will be qenerated
automatically:

DECLARE ULIST ENTEY(POINTER) FETURNS(POINTER);

Argu ment:

The list-pointer argument must be a pointer expression that
identifies a list of keys in main storage. It must have
been set when the ULIST function is invoked.

Result:

The value returned by the ULIST function is a pointer
identifying the new list having cnly unique key values.
However, if the argument list is found to not have any
duplicated key values, its list pointer is simply returned
(this always happens when the argument list is null or has
only one key).

PAGE 79

'The UNLOCK Statement'

The UNLOCK statement makes a locked current record or
sukrecord available to other tasks for READ operations; it
may cause transmission of the current record or subrecord to
the data base.

General Format:

UNLOCK FILE (file-name) <SUBFIL!(ctlfield)>;

Syntax Rule:

The UNLOCK statement must be a subargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file whose
current record is to be unlocked. The file must
have the UPDATE attribute.

2. A record can be unlocked only by the task which
locked it.

3a. If no SUEFILE clause is present, the current root
record will be unlocked.

3b. A SUBFILE clause, if present, specifies that the
current subrecord of a subfile is to be unlocked.
The ctlfield expression value is converted to a
character string the first eight characters of
which identify the control field.

4. If the locked current (sub)record has been updated
by a PUT or REPUI FIELD statement, the UNLOCK
statement will cause it to te retransmitted to the
data base. It ccntinues to be the current
(sub)record of the file, but PUT and REPUT
statements are invalid until another current
(sub)record is established.

5. Unlocking a (sub)record that was READ with the
NOLOCK option or that has already been UNLOCKed
has no effect.

PAGE 80

'The UPLIST Function'

Unique Parent LIST builds a list of the unique parent (root)
record keys from a given sub-record (children) key list and
returns a pointer value identifying the new list to the
point of invocation. The new list has the same number of
parent keys as the number cf subrecord keys in the given
list. Parent keys will not be repeated, even if more than
one of the given subrecord keys are dependent on a
particular parent record. A previously current and updated
sutrecord of the subfile referenced by the given list will
be transmitted to the data tase. The subrecord identified
by the last key in the given list will remain as the current
subrecord of that sub-file; any current root or index
records or subreccrds of other subfiles will remain current.
The READ cursor of the given list will be reset.

Reference:

UPLIST (file-name, child-list-pcinter);

An UPLIST function reference is used as or in an expression;
it is not to be a subargument in a tE preprocessor function
reference. The user may not declare any attributes for the
UPIST function; the following statement will be generated
automatically:

DECLARE UPLIST ENTRY(,PTR) RETUES (FTP);

Arguments:

The file-name argument specifies the data base file from
which subrecords are to be transmitted. It may not be an
OUTPUT file. If the file is not open, it will be opened
automatically. The file-name must be used in at least one
DBfL/I statement elsewhere in the program.

The child-list-pointer argument must be a pointer expression
that identifies a list in main storage of subrecord keys
from the data base accessed by file-name. It must have been
set when the UPLIST function is invoked.

Result:

The value returned by the UPLIST function is a pointer
identifying the new unique parent list. The new list will
be in order of ascending internal parent key values without
duplicated values. If the given subrecord list is null, a
NULL pointer value will be returned.

PAGE 81

'The WRITE Statement'

The WRITE statement causes a physical record (presumably,
from a backup file) to be transmitted to a SEQUENTIAL OUTPUT
file.

General Format:

WRITE FILE (file-name) FRCM (variable);

Syntax Rule:

The WRITE statement must be a subarqument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the file to which the
record is to be transmitted. It must be a
SEQUENTIAL OUTPUT file owned bt the user who
executes the WRITE statement.

2. If the file is not open, it is opened
automatically with the SEQUENTIAL OUTPUT
attributes.

3. The variable in the FROM clause, declared and
filled by the user, contains the record to be
written. It must have the self-defining format of
an internal variable-length record. Its key field
value (without validation or conversion) must be
higher, in order of ascending internal values,
than that of the record transmitted by the
previous WRITE statement for the file. (The
record does not become the current record of the
file for purposes of PUT statements.)

PAGE 82

'The #XREF Functicn'

#XREF calculates the number of cross reference keys in the
current record of an index and returns it to the point of
invocation.

Reference:

#XREF (file-name, indfield)

A #XREF function reference is used as or in an expression;
it is not to be a subarqument in a DE preprocessor function
reference. The user may not declare any attributes for the
#XBEF function; the following statement will be generated
automatically:

DECLARE #XREF ENTRY(,CHAR(8)) RETURNS (FIXED BIN(31));

Arguments:

The file-name identifies a data base file. It may not be an
OUTPUT file.

The indfield specifies the index file. A current index
record must have been established by a READ INDEX statement
when the #XREF function is invoked. The indfield expression
value is converted to a character string, if necessary, the
first eight characters of which identify the indexed
fiel d.

Result:

The value returned by the #XRFF function is a binary integer
of maximum precision giving the number of cross-references
in a current index record. If an index record is not
current, a zero value will be returned.

FILEPLEX

4 7SUBFILE

,9

2

A LIST OF A LIST OF
FILEPLEX SUBFILE

RECORD KEYS 6 RECORD KEYS

3.1 3.2

INDEX INDEX

FIGURE 1. FORMATION OF LISTS ,

A=A 'I

A

SA '.&' B

A 2D

FIGURE 2. VENN DIACRAMS

PAGE 85

APPENDIX A.

FILE LEVEL STATEMENTS

ON EBRORFILE (mfcb) ISYSTEM I
I_GO TO latel_l ;

OPEN FILE (mfcb) <TITLE ('mfct')> I DIRECT 1 1 INPUT-
I_SEQUENTIAL_| I OUTPUT 1;

{_UPDATE_|

CLCSE FILE (mfcb) <ERASE>-

RECORD LEVEL STATEEENTS

LCCATE FILE (mfcb) I KEYFROM (expr) I
I SUPFILE (scfn) _ ;

READ FILE (mfct) I forwards j <NOLOCK>;
I KEY (expr)
I LIST (ptr) <KEY(n)> {
1_PER SUEFILE (scfn) _I

READ FILE (mfcb) SUEFILE (scfr) I forwards (<NOLOCK>;
IJ_EY (expr)_l

READ FILE (mfcb) INDEX (ifn)| fcrwards I ;
I_FEY (exrr)_l

UNLOCK FILE (mfcb) <SUBFILE (scfn)>;

PHYSICAL RECCRD STATEMENTS

PAGE 86

GET FILE (mfcb) RECORD INTO (var);

WRITE FILE (mfcb) FROM (var);

FIELD LEVEl STATEMENTS

PU FILE(mfcb) FIELD(fn<,fn2>) FROM (expr<,exvr2>);

GET FILE(mfch) FIELD(fp<,fn2>) INTO (var<,var2>);

GET FILE(mfcb) INDEX(ifn) KEY INTO(vat);

REPUT FILE(mfcb) FIELD (fn<,fn2>) FPCI (expr<,expr2>);

fullword = #FIELD fmfcb, fn);

fullord = #XREF (mfcb,ifnl;

DATABASE LII STATEMENTS

GET FILE (mfcb) | SUEFILE (scfn) I LIST SET (ptr);
INDEX (ifn) I

l_anchor is index _I

GET FILE (mfcb) <SUBFILE (scfn)> KEY SET (ptr);

Ptr = CCLIST (mfct, scfn, ptrl);

Ptr = CPLIST (mfct, ptrl);

Ptr = UPLIST (mfct, ptrl);

NCN-DATABASE ITST STATEMENTS

ON LISTERROR | SYSTEM I

PAGE 87

J_GO TO label_ I

GET LIST (ptr) KEY (0);

GET LIST (ptr) KEY <(n)> INTO (var):

GET LIST (ptrl) KEY SET (ptr2);

Ptr = ULIST (ptrl);

Ptr = DUPLIST (ptrl);

Ptr = LIST (ptrl,op,ptr2);

SET LIST (ptr2) SIZE (dim) LIFE LIST (ptrl);

GET LIST fptrl) INTERNAL KFY INTO (var);

PUT LIST (ptr2) INTERNAL KEY FRCM (exr);

Fullword = #LIST (ptr);

FPEE LIST .(ptr <,ptr2>);

FREE LIST;

PAGE 88

GLOSSARY

dia an expression resulting in a numerical
dimension value

expr an expression resulting in a value

fn an expression resulting in a field name

ifn an expression resulting in an indexed field
name

mfcb mainline FILE control block name

n an expression resulting in a numerical
subscript value

op list operator: *'1 or '&' or *-'

ptr pointer to a list of keys in main stroage

scft an expression resulting in a subfile control
field name

var variable data area name

PAGE 89

TONIC C.4 - DBJOIN - JOINING NEW USEPS

I. INTRODUCTION

The JOIN command gives the NASIS Data Base
Administrator the ability to control the access of
retrieval users to the various files of the system. In
addition, it also allows the DEA to specify passwords,
time slice values and authority codes which influence
use of the system. The information is maintained in
data set NASIS.USERIDS.

II. COMMANDS:

JOIN

The JOIN command establishes a new NASIS-ID which can
be used to access the system. This is accomplished by
creating a new record in the data set and inserting the
values for the various data fields.

Command: JOIN
Operands: NASISID=id,PASSWOFD=code,TS=value,

AUTH=authority,ILES=file list

Where:

id
identifies the new NASIS-ID to be created.

Specified as: a 1-8 character alphanumeric value
beginning with a letter.

code
identifies the password or indentification code to
be used for this NASIS-ID.

Specified as: a 1-8 character alphanumeric
value.

Default: No password will be assigned.

value
indicates the magnitude of the time slice in Milli
Seconds to be assigned tc this NASIS-ID under MTT
mode of operation.

Specified as: a 1-5 digit numeric value.

authority
indicates the authority level to te assigned to
this NASIS-ID under MTT mode of operation.

PAGE 90

Specified as: a one character code, 'U' for user
or ID' for DEA.

Default: 'U' will te assigned.

file list
identifies the files to be made available to this
NASIS-ID.

Specified as: a list of fully qualified file
names, i.e. DBA-ID.FILE-ID.

QUIT:

The QUIT command removes a NASIS-ID from the list of
valid ids.

Command: QUIT
Operand: NASISID=id

CHANGE:

The CHANGE command is used to alter the values of one
or more of the data fields (cther than the file list)
associated with a particular NASTS-ID.,

Command: CHANGE
Operands: NASISID=id,PASS CD=code,TS=value,

AUTH=authority

ADD:

The ADD command is used to specify new files which are
to be added to the list of files to which a given
NASIS-ID is permitted access.

Command: ADE
Operands: NASISID=id,FILES=file list

DELETE:

The DELETE command is used to remove files from the
list of files to which a particular NASIS-ID is
permitted access.

PAGE 91

Command: DELETE
Operands: NASISIE=id,FILES=file list

DISPLAY:

The DISPLAY command is used to list the files available
to a particular NASIS-ID, alongq with the other data
values present in his identification record.

Command: DISPLAY
Operand: NASISID=id

III. EXAMPLE

USER: join john,ace,99999,,
SYSTEM: JOHN JOINED TC NASIS WIBH PASSWORD=ACE,

TIMESLICE=99999 MILIESECONrS, AND AUTHORITY=.
USER: add john,(safety.asrdi,safety.erts)
SYSTEM: Adds the two files to the list of files

available to JOHN.
USER: display john
SYSTEM: Display the current information maintanined

for JOHN.
USER: change john,auth=d
SYSTEM: Applies the appropriate change.

PAGE 92

TORC D.2 - DESCRIPTOR EDITOR

1. INTRODUCTION

The Descriptor Editor is an editing program used for

creating and updating the field descrirtors of a NASIS
Data Base.

II. INVOKING THE EDITOR

The Descriotor Editor is invoked by entering the EDIT
command and specifying the arpropriate mode of
operation and the descriptor file to be edited.

EDIT MODE=<CREATEIUPFATEIRESTORE>,FILE=filename

Where:

MODE
Is Specified as:

CREATE: assumes that no data files exist and that
the user is either creating or continuing to
create field descriptcrs.

UPDATE: assumes that data files do exist and that
the user wishes to modify the description of
one or more of the fields. The UPDATE mode
allows the user to make changes that do not
affect the physical fcrmat of the record.

RESTORE: reads in previously, check-pointed
descriptors and continues processing in the
CREATE mode.

FILE
Is specified as the name of the data base
descriptors the user wishes to edit. Specified as
an alphanumeric string of at most 6 characters,
the first of which must be alphatetic.

For all modes the first letter of the mode type is a
sufficient abbreviation. If the entered mode value is
invalid, the editor will re-prompt the user for a
correct value. If the user defaults the prompt for the
mode, the Editor will terminate and control will be
returned to the MTT director.

EXAMPLES:

1. The user wants to create a new data base
whose name is PECPIE.

PAGE 93

SYSTEM: ENTER NASIS CCMMAND:
SYSTEM: ENTER:
USER: EDIT
SYSTEM: ENTER MODE:
USER: CREATE
SYSTEM: ENTER FILE NAME:
USER: PEOPLE

2. The user wants to modify the descriptors for
an existing data base whose name is PGMS.

SYSTEM: ENTER NASIS CCMMAND:
SYSTEM: ENTER:
USER: EDIT UPDATE,PGMS

3. The user has a checkpointed set of
descriptors for the data base GAMES which he
wishes to continue defining.

SYSTEM: ENTER NASIS CCMMAND:
SYSTEM: ENTER:
USER: EDIT FESTOPE,GAMIS

III. DEFINITIONS

The following definitions are used throughout this
section:

1. Boolean Values - Used where ever a yes or no type
of response is required. The following are
acceptable values fcr a 'yes' type of response:

YES, Y, TRUE, 1, ON, 1.

The following are acceptable values for a 'not
type of response:

NO, N, FALSE, F, OFF, O.

2. Fieldname - Is a character string of 1-8
characters lon of the following form: the first
character must be alphabetic, and the other
characters, if any, must be alphanumeric.

3. Routine Name - Is a character string of 1-8
characters long with the following form: the
first character must be alphabetic, and the rest
of the characters, if any, must be alphanumeric.

IV. THE CREATE MCEE COMMANDS

A. The ADD and CHANGE COFMANDS allow the user to
create a new field descriptcr or modify existing

PAGE 94

field descriptors.

ADD (CHANGE) FLDNAME=field-name,
TYPE= (FLDTYPE=field-type

<,A LIGN=<RGHTILEFT>>),
FOR= (FLDFORC=field-format,

FLDIEN=field-length,
ELE~LEN=element-length,
EL EMLI IM=elem ent-n umber
<,UNIQUE=<lI N>>) ,

BOUTINES=(CONV=conversion-routine,
FORMAI=formattinq-routine,
VALI=validation-routine,
VALIDAEG=validation-argument),

INDEXED= (INDEX=<Y IN>,
IFLDNAME=field-name
<,TXTINT=<INTENALEXTERNAL>,

EXTLFN=external-lenqth,
SPANNED=<Y N>>),

ASSOCED= (ASSOC=<Y IN>,
AFIDNA ME=field-name) ,

SUEFILEE= (SUBFILF=<Y IN>,
SFLDVAME=field-name),

SUEFIELD= (SUBFLD=<YIN>,BASEFLD=field-name,
OFFSET=cffset
<,<FILE=<*filenamejANCHOR>>
or <FILE=<ASSOCIATEDISUBFILE>,

FLENAME2=field-name>>)

Where:

FLDNAME
identifies the field to be added.

Specified as: a valid fieldname.

FLDTYPE (FIELD TYPE)
identifies the physical format of the
field.

Specified as:

A - alphanumeric character string

R - bit string

BN - 8 bit unsigned binary number

BP - packed bit string. These fields
will be placed immediately after
the key field as one contiauous bit
string.

PAGE 95

HX - hexadecimal

LN - large numberic (32 bit signed
binary number).

S - scientific (14 digit decimal number
within the range of 10**-75 :
10**+75).

SD - scaled decimal (nine digit numbers
within the range 10**-9 :
1I**+9).

SN - short numeric (16 tit signed binary
number).

SS - short scientific (six digit
decimal numter within the absolute
range of 10**-75 : 10**+75).

ALIGN (ALIGNMENT)
identifies right or left alignment of the
field.

Specified as: 'PIGBE' or '' for right
alignment and 'LEFT' or 'L' for left
alignment.

FLDFORM - (FIELD FOFMAT)
identifies the logical format of the field.

Specified as: F-FIXED, V-VARIABLE, FE-FIXED
ELEMENT, VE-VABIABIE ELEMENT.

FLDLEN (FIELD LENGTE)
indicates the length of fixed fields or the
maximum length for ether types of fields.

Specified as: a positive number.

(1) For the file key field, the maximum
field length is 256.

(2) For all other fields:

(a) If FLDFORM=F, then the maximum
field length is 3996 minus the key
field length;

(b) For all cther values of FLDFORM,
the maximum length is 3994 minus
the key field length.

PAGE 96

ELEMIEN (ELEMENT LENGTH)
indicates the raximum length of fixed and

variable elements.

Specified as: a positive number with the
range of 1-256 if FIDECRM is FE: the range is
1-255 if FLDFOFM is VE.

ELEMLIM
indicates the maximum number of elements
allowed in the field.

Specified as: a positive number.

(1) If FLFCRBM=FE, then the maximum number
of elements is equal to the field
length.

(2) If FLDFORM=VE, then the maximum number
of elements is the field length divided
by two.

UNIQUE
indicates whether or not all element values
within a multi-element field are to be
unique.

Specified as: a boolean value.

Default: N

CONV (CCNVERSION ROUTINE NAME)
identifies the name cf the routine used to
convert the input data as it is placed into
the data base.

Specified as: a routine name.

FORMAT (FORMATTING FCUTINE NAME)
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

VALID (VALIDATION RCUTINE NAME)
identifies the name of the routine used to
validate the input data.

Specified as: a routine name.

VALIDARG (VALIDATION ROUTINE ARGUMENT)
indicates the argument required by the
validation routine to validate the input

PAGE 97

values.

Specified as: a hexadecimal character string
of 1-100 characters.

INDEX
indicates whether the field is to be
indexed.

Specified as: a boolean value.

Default: N

IFLDNAME
identifies ancther field previously defined
with which this field is to be indexed.

Specified as: a valid fieldname of a
previously entered indexed field.

Default: the Iditor assumes that this field
is the first entered field of a new index
file.

EXTINT
indicates whether the key of the index file
is to be in internal or external form. If
the key values are to be in external form,
then the field values must be formatted
before being placed on the index file.

Specified as: INTERNAL or I for internal
form or EXTERNAL or E for external form.

Default: internal form, i.e., the value used
on the index file is the same as that stored
in the anchor file.

EXTLEN (EXTERNAL LEG T H)
indicates the maximum length possible for an
formatted value of the external field.

Specified as: a positive numeric value in
the range 1-25f.

NOTE: if the EXTINT entered value is
external, then EXTLEN must be specified.

SPANNED
indicates that this index is to consist of
spanned records.

Specified as: a boolean value.

C'P

PAGE 98

Default: N

NOTE: this implies that the maximum lenath
for index keys can be no larqer than 255 to
allow for a one byte spanned counter.

ASSOC (ASSOCIATED)
indicates whether the field is to be
associated.

Specified as: a boolean value.

Default: N

AFLDNAME
identifies ancther field previously defined
with which this field is to te associated.

Specified as: a valid previously entered
field name.

Default: the Editor assumes that this field
is the first entered field of a new
associated file.

SUBFILE
indicates whether the field is tc appear on a
sutfile.

Specified as: a boolean value.

Default: N

SFLDNAME
identifies another field previously defined
which identifies the sutfile on which the
field is to be placed. The field named may
be the subfile control field.

Specified as: a valid previously defined
fieldname.

SUBFID
Indicates whether this field is to be defined
on either a Tart or the whole of another
field.

BASEFLD
identifies the field on which this new field
is to be defined.

Specified as: a valid previously defined
fieldname.

PAGE 99

OFFSET
indicates the bit or character position of
the defined field on which this subfield is
to start.

Specified as: a positive numeric value
between zero and the lenght of the defined
field minus one.

NOTE: the offset value must be specified if
the subfield is specified.

FILE
identifies the descriptor region on which
resides the field that is the defininq base
for this subfield.

Specified as:

(1) The character 9*' concatenated to the
descriptor file region name.

(2) The anchor file which may be entered as
either of the followinq: ANCHOR or
AN.

(3) An associated file which may be entered
as either of the following: ASSOCIATED
or AS.

(4) A subfile which may be entered as either
of the followina: SUBFILE or S.

Default: will be assumed to be the anchor
file.

NOTE: this parameter only needs to be
entered if the defined fieldname is not
unique within the data base, such as
RECLEN.

FLDNAME2
identifies a field which is used to determine
which associated file or which subfile is
being referenced.

Specified as: a valid fieldname.

NOTE: Any parameter to the CHANGE function
which is defaulted, will imply that the
existing value for that descriptor field will
be left unaltered.

PAGE 100

NOTE: There is a user default variable
"EDPROMPT" which when set equal to "Y" will
cause the user to te prompted for every
possible applicable parameter while the user
is either ADDinq a new field or CHANGing an
existing field. In the ncrmal mode there are
parameters such as field alignment ("ALIGN")
which are not prompted for if the user does
not enter them in the command stream.

EXAMPLES:

1. When first creating a new set of descriptors,
the user is first prompted for the anchor
file key field.

SYSTEM: ENTER FEY:
USEB: ArE ACCESSNO
SYSTEM: ENTER FIELDTYPE:
USER: A
SYSTEM: ENTER FIELD FCRMAT:
USER: F
SYSTEM: ENTER FIELD LENGTH:
USER: 8
SYSTEM: ENTER ROUTINES:
USER: (return - wants standard defaults)
SYSTEM: ENTER: (rrcmpt for next editing

request)

NOTE: If the user declines to enter the key
field information, the Editor is terminated
and control is returned to the Maintenance
director.

2. The user wishes to add the field USERNAME
which is to be a varying element field, each
element is to te 12 characters long and allow
for 50 elements per record. USERNAME is to
be placed cn the asscciated file along with
USERTYPE. It is also to be inverted.

SYSTEM: ENTER:
USER: ADD
SYSTEM: ENTER FIELE NAME:
USER: USERNAME
SYSTEM: ENTER FIELE TYPE:
USER: A
SYSTEM: ENTER FIELt TCRMAT:
OSER: VE
SYSTEM: ENTER FIELE LENGTB:
USER: 500
SYSTEM: ENTER ELEMENT LENGTB:
USER: 12

PAGE 101

SYSTEM: ENTER NUMBER CF EIEMENTS:
USER: 50
SYSTEM: ENTER ROUTINES:
USER: (CONV=UNCVT,TORMAT=UNFMT,

VALID=UNVAL,)
SYSTEM: IS FIiEL TC EE INDEXED?
USEP: YES
SYSTEM: CN WHICH INEEX FTLE IS FIELD TO BE

PLACEr?
USEP: (return)
SYSTEM: IS FIEID TO BE ON AN ASSOCIATED

FILE?
USER: Y
SYSTEM: ON WHICH ASSCCIATED FIIE IS FIELD TO

BE PLACED?
USER: USERTYPE
SYSTEM: IS FIELD TO EE PLACED ON A SUBFILE?
USER: NO
SYSTEM: ENTER DEFINING BASE FIELD NAME:
USER: (return)
SYSTEM: ENTER:

3. The user wishes to change the field length on
field SOCSECNC from 8 to 9 and wishes to
make the index on which it appears a spanned
index.

SYSTEM: ENTER:
USER: CHANGE SOCSECNC,,(,9),,(, Y),,,Y),,

E. The ADrDIKE Descriptor Function

This function allows the user to create a
descriptor with all the same specifications as a
previously defined field.

ADDIIKE FLENAMF1=new-fieldname,
FLDNAE2=other-fieldname

Where:

FDNAME1
identifies the new descriptor to be added.

Specified as: a valid fieldname.

FLDNAME2
identifies a previously defined field of
which the new field is to be an exact
duplicate except for the field name.

Specified as: a valid field name.

PAGE 102

EXAMPLE:

1. The user wishes to add field MINKEYWD to have
exactly the sane specifications as the field
MAJKEYWD.

SYSTEM: ENTER:
USER: ADDLIE MINKEYWD,MAJKEYWD

C. The CHECKPCINT Command

Checkpcint allows the user to save the descriptors
currently defined in a separate TSS VAM file.

CHFPOINT (none)

CBPOINT should be used when it is deemed
necessary to save the descriptors as rapidly
as possible. The user may continue to
process at a future time VIA the Restore
Command.

D. The CREATESUE Command

The command allows the user to create a subfile.

CREATSUB FLDNAME=contrcl-field-name,
MAXRECS=#-records,
ASSOC=<YIN>,
APIDNA ME=field-name

Where:

FLDNAME
identifies the field to be known as the
sutfile control field.

Specified as: a valid field name.

MAXRECS
indicates the taximum number of subfile
records that can occur per anchor file
record.

Specified as: a tinary number in the range
of 1:1325.

ASSOC
indicates whether the field is to be
associated.

Specified as: a boolean value.

PAGF 103

Default: N

AFLENAMn
identifies another field, previously defined,
with which this field is to be associated.

Specified as: a valid previously entered
fieldname.

EXAMPLE:

The user wants to create a sutfile for "PETS"
which is tc be associated with CHILD.

SYSTEM: ENTER:
USEF: CREATSUE PETS,20,Y,CHILD

E. The DELETE Ccmmand

This command allows the user to delete a
previously created field descriptor other than
the key field.

DELETE FLDNAME=fieldname

Where:

FLDNAME
identifies the field tc be deleted.

Specified as: previously described field
Dame.

F. THE DISPLAY COMMAND

This command allows the user to display the
specificaticns entered for a previously created
descriptor.

DISPLAY FLDNAME=fieldname

Where:

FLDNAME
identifies the field descriptor to be
displayed.

Specified as: a valid fieldname.

G. The END command

This command terminates a descriptor editor
session.

PAGE 104

END (none)

After the END command has finished, control will
be returned to the Maintenance director. If the
user has not FILE'd since making additions,
deletions, or modifications, he will be queried as
to whether he wishes to FILE the descriptors. If
the user wishes to terminate, then the descriptor
editor will indeed terminate the current session;
otherwise, the user will be prompted for his next
descriptor editor ccmmand.

I, The FIELDS Ccmmand

This command allows the user to display the names
of all the field descriptors thus far defined.

FIELDS (none)

I, The FILE Command

This function allows the user to indicate that he
wants the descriptors to be written from virtual
memory to disk storaqe.

FILE DESCOK=<YIN>

Where:

DESCOK
indicates whether or not the descriptors are
complete. If a NO value is indicated no data
can be loaded into this file.

Specified as: a boolean value.

Default: N

J, The FLDSEC (Field Security) Command

This command permits the data base owner to
restrict access to a field or a group of fields.

FLDSEC FLDNAME=(field-name),
SECURITY= (<<ADD I DELETE>.>

security-code<,...>)

Where:

FLDNAME
is a list of one or more existing fieldnames
to which the data base owner wishes to
restrict access.

PAGE 105

Specified as: a list of valid fieldnames.

SECUPITY
is a list of security codes appended by an
add-delete code separated from the security
code by a period. The add-delete code is
specified as A or ADr for adding a security
code and D or DELETE for deleting a security
code. If no add-delete code is entered, it
is assumed the user is adding the security
code. The security code is specified as an
alphanumeric character strinq of 1 to 8
characters. A maximum of 18 security codes
may be specified for any field.

EXAMPLE:

The data base owner wishes to restrict the
fields ACCOUNT and VAIUE to the persons with
the security codes BOB, HARRY, and JOHN and
to delete TOM from the security list.

SYSTEM: ENTER:
USER: FLESEC (ACCCUNT,VALUE),(ADD.BOB,

A.HAPBY,A.JCBV,D.TOM)

K. The MOVE Command

This command allows the user to reposition fields
within the defined data layout.

MOVE FLDNAME1=new-location-fieldname,
FLDNAME2=fieldname

Where:

FLDNAME1
identifies which field or the new location
after which the field specified by FLDNAME2
is to be positioned,

Specified as: a valid fieldname.

FLDNAME2
identifies the field tc be moved.

Specified as: a valid fieldname.

NOTE: A redefined field, i.e., subfield,
cannot be moved as its position is determined
by the positicn of the base field. If a
subfield is specified as the new position
fieldname, the MOVE command will locate and

PAGE 106

use the base field name as the new position
field name.

NOTE: A superfield cannot be used as a new
position fieldname, nor can it be moved, as
a superfield consisting only of other fields
has no field pcsition.

EXAMPLE:

The user has entered the three fixed fields
in the following: AREACODE, LOCALNUM,
EXCHNG The user wishes to change the order to
AREACODE, EXCHNG, ICCALNUM.

SYSTEM: ENTER:
USER: MOVE AREACODE,EXCHNG

Notice this could also be accomplished by the
following:

SYSTEM: ENTER:
USER: MOVE EXCHNG,1OCALNUM

1. The PRINT Command

This command generates a printer listing of all
the field descriptors and file descriptors as they
exist in core at the time the PRINT was issued.

PRINT (none)

E. The RENAME Command

This command permits the user to change the name
of a field without alterinq any of its other
specifications or its loccation in the data
record.

RENAME FLDNAME1=new-fieldname,
FLrNAME2=old-fieldname

Where:

FLDNAME1
identifies the new field name.

Specified as: a valid fieldname.

FLDNAME2
identifies the existing field name

Specified as: a valid fieldname.

PAGE 107

EXAMPLE: The user wishes to change the name of the
field OLDNAME to the name NEWNAME.

SYSTEM: ENTER:
USER: RENAME NEWNAME,OLDNAE

N. The RECSEC (Record Security) Command

This command permits the user to control access to
a group or groups cf records within the data
base.

RECSEC DFLDNAMI=field-name,
SECUPITY=(<<ADDIDE1ETE>.>

security-code:mask<,...>)

Where:

DFLrNAME
is the existing fieldname to which the file
record securitV is to apply.

Specified as: a valid fieldname.

SECURITY
is a list of up to 18 security codes and
security masks determining who is to be
permitted access to the secured records on
the file. It is specified as an add-delete
code followed by a period, followed by the
security code, followed by a colon, followed
by the security mask. The add-delete code is
specified as ADD or A for adding a security
code, or DELETE or D for deleting a security
code. The security code is an alphanumeric
character strirq of 1-8 characters. The mask
is two digit hexadecimal code.

The security ccde is used to compare against
the value in the record security field of a
record to determine whether cr not a user has
access to that record.

O. The RESTORE Command

This command permits the user to restore to core
memory the descriptors which had been previously
saved by the use of the CHKECINT command.

RESTORE (none)

P. The SAVSTRT (Save Strategy) Command

PAGE 108

This command allows saving of descriptor editor
commands in the strategy data set for future
recreation of descriptors as they existed in
virtual memory when the SAVSTRAT command was
issued.

SAVSTRT STRTNAE=strategy-name

Where:

STRTNAME
is the strategy name in the strategy data set
in which the descriptor editor commands are
to be saved.

Specified as: a 1-16 character long
alphanumeric character string.

0. The Superfld (Define Superfield) Command

This command allows the user to create a new field
descriptor which is defined as consisting of Data
from several fields.

SUPEFFLE FLDNAME=fieldname,
ROUTINES=FCRMAT=formattinq-routine,
FLDLIST=(<<INTEPNAI EXTERNAL>.>

field-name<,...>)

Where:

FLDNAME
identifies the name of the new superfield.

Specified as: a valid field name.

FORMAT
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

FLDLIST
is a list cf the previously defined
fieldnames from which this superfield is to
be composed. The order of the fieldnames
used to define the superfield is the order in
which they were entered. The user may
specify whether the internal or external form
of the field is tc be passed to the
superfield formatting routine.

Specified as: a list of up to 16 character

PAGE 109

strings of the form: The output format
concatenated tc a period concatenated to the
fieldname to be included in the superfield.
The format type internal may be specified
as:

INTERNAl or I

The format type external may be specified
as:

EXTERNAL or E

Default: If the output format is omitted,
then it will be assumed to be the external
format type.

NOTE: The superfield components must stay within
the following restrictions:

1. It may contain at most one multi-element
field.

2. It may contain components from one but not
more than one subfile.

IV. THE UPDATE MODE COMMANDS

A. The CHANGE COMMAND

This command allows the user to modify a
previously defined field.

CHANGE FLDNAME=fieldname,
1YPE= (FLDTYPE=field-type

<,ALIGN=<RIGHT LEFT>>),
FORM= (FLDFOP1 =field-format,

FLDLEN=field-length,
ELEMIEN=element-length,
ELEMLIM=element-number
<, UNIOUE=<Y N>>) ,

PCUTINE= (CONV=conversion-routine,
FOREAT=formatting-routine,
VALID=validation-routine,
VALIDARG=validation-argument)

Where:

FLDNAME
identifies the field to be modified.

Specified as: a valid fieldname.

PAGE 110

FLDTYPE
identifies the physical format of the
field.

Specified as:

A for an alrhanumeric character string, of
which each character may consist of any
valid EECtIC character.

B for a bit string.

BN for an 8 bit unsigned binary number
which has a value in the range 0-255.

BP for a packed bit string the same as B,
except that these fields will be placed
immediately after the key field as one
continuous bit strina.

EX for a string of hexadecimal numbers.

IN for numeric or a 32 bit signed binary
number.

S for scientific cr 14 digit decimal
number within the range of 10**-75 :
10**+75.

SD for scaled decimal nine digit number
within the range of 10**-9 : 10**+9.

SN for numeric or 16 bit signed binary
number.

SS for short scientific or a six digit
decimal number within the range of
10**-75 : 10**+75.

ALIGN
identifies either right or left alignment of
the field.

Specified as: RIGHT or R for right alignment
and LEFT or I for left alignment.

FLDFORM
identifies the logical format of the field.

Specified as: F for FIXED,V for VARIABLE,FE,
for FIXED ELEMENT,VE, for VARIAELE ELEMENT.

FLDLEN

PAGE 111

indicates the length of fixed fields or the
maximum length for other types of fields.

Specified as: a positive integer.

(1) For the anchor file key field, the
maximum field lenqth is 256.

(2) For all other fields:

(a) If FIDFORM=F, then the maximum
field length is 3996 minus the key
field lergth; otherwise,

(b) For all other values of FLDFORI,
the maximum length is 3994 minus
the key field length. This allows
for a two byte field length
indicator.

ELEMLEN
indicates the length of fixed elements or the
maximum length for variable elements.

Specified as: a positive numeric value with
the range of 1-256 if FLDFCRM is FE, else the
ranqe is 1-255 if FLtFCRM is VE. This allows
one byte for an element length indicator.

ELEMLIM
indicates the maximum number of elements
allowed in the field.

Specified as: a positive integer.

(1) If FLDFCEM=FE, then the maximum number
of elements is equal to the field
length.

(2) If FLDFOPM=VE, then the maximum number
of elements is the field length divided
by two.

UNIOUE
indicates whether or not all element values
within a multi-element are to be unigue.

Specified as: a boolean value.

CON V
identifies the name of the routine used to
convert the input data as it is placed into
the data base.

PAGE 112

Specified as: a routine name.

FORMAT
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

VALID
identifies the name cf the routine used to
validate the input data.

Specified as: a routine name.

VALIDARG
indicates the argument required by the
validation routine tc validate the input
values.

Specified as: a hexadecimal character string
of 1-100 characters.

NOTE: In the UPEATE mode, values to the CHANGE
function will noct te accepted which cause changes
to he made to other field descriptor records, such
as changing the field length if the field format
is fixed as this changes the base length of the
data records.

NOTE: Any parameter to the CHANGE function which
is defaulted, will imply that the existing value
for that descriptor field will be left
unaltered.

Note: There is a user dafault veriable "EDPROMPT"
which when set eaual to "Y" will cause the user to
be prompted for every possible applicable
parameter while the user is CHANGE'inq an existing
field. In the normal mode there are parameters
such as field alignment ("ALIGN") which are not
prompted for if the user does not enter them in
the command stream.

EXAMPLE:

The user wishes to change the specifications
for the field PEOPLE to PIGHT alignment,
change the element length from 20 to 30 and
the element limit from 5 to 10.

SYSTEM: ENTER:
USER: CHANGE PECELE.(,IGHT),(,,30,10),,

PAGE 113

B. The DISPLAY COMMAND

This command allows the user to display the
specifications entered for a previously created
descriptor.

DISPLAY FPLNAME=fieldname

Where:

FLDNAME
identifies the field descriptor to be
displayed.

Specified as: a valid fieldname.

C. The END COMMAND

The END command is terminates a descriptor editor
session

END (none)

After the END command has finished, control will
he returned to the Maintenance Director.

D. The FIELDS Command: displays all of the descriptor
fieldnames in the descriptor file record, and all
of the descriptcr fieldnames in a field
descriptor.

FIELDS (none)

F. FLDSEC (Field Security) Command: permits the file
owner to restrict access to a field.

FLDSEC FIDNAME=field-name,
SECURITY=(<<ADDjDELETE>.>

securitv-code<,...>)

FLDNAME
is an existing field name to which the owner
wishes to restrict access.

Specified as: a valid fieldname.

SECURITY
is a list of security codes appended by an
add-delete code separated from the security
code by a period. The add-delete code is
specified as A or ArE for adding a security
code and D or DELETE for deleting a security
code. If no add-delete code is entered, it

PAGE 114

is assumed the user is adding the security
code. The security code is specified as an
alphanumeric character string of 1 to 8
characters. A maximum of 18 security codes
may be specified for any field.

F. The PATCH Command

This command is used to change the value of almost
any descriptor field on any descriptor record in
any descriptor region. To use the PATCH command,
the user must do a REVIEW of the desired

descriptor record. This not only displays the
contents of this descriptor but also positions to
the record that is to be patched.

PATCH (keyword=text<,...>)

Where:

keyword
identifies the descriptor field that is to be
patched.

text
is the value with which the descriptor field
specified in 'keyword' is to be patched.

The user may specify any number of patches in a
parenthesized list.

The following is a list of file descriptor or
header descriptor field names that may be patched
and their values.

HEADER FIELDNAME FIELD VALUES
----------------- ------------

(1) FILETYPE ANCHOF or 1, ASSOCIATE or 2,
SUBFILE or 3, INDEX or 4.

(2) DESCRCT A positive integer <= 4000.
(3) BSELNGTH A positive integer <= 4000.
(4) DESCOK A boolean value.
(5) SPANNED A boolean value.
(6) DATA A boolean value.
(7) MN7NABLE A boolean value.
(8) MNTNING A boolean value.
(9) LOADABLE A boolean value.
(10) RECSECFP A positive integer <= 261.
(11) RSECTYCD The form of the patch text is:

(n) security-code:mask

Where:

PAGE 115

n
is the index of the security code to be
patched. The index must be entered or the
patch will be rejected.

Specified as: a positive integer <= 18.

NOTE: The next security code value may be
added to the list by specifying the next
larger index value.

Refer to the RECSEC command writeup for a
discussion of the security parameter.

EXAMPLE:

The user wishes to patch the anchor header
descriptor sc that BSELNGTH=31, DATA=NO, and
the second value of record security to
BOB:60.

SYSTEM: ENTER
USED: REVIEW ' ',*READER
SYSTEM: (displays the anchor header

informaticn.)
SYSTEM: ENTeR:
USEF: PATCH (BSELNGTH=31,DATA=N,

RSECTYCD=(21BCE:60)
SYSTEM: ENTER

The following is a list of field descriptor
fieldnames that may te patched alcng with their
values.

FIELD DESCRIPTOR
FIEIDNAMES FTELE VALUES
-- ------- ------------

(1) ASSCCFIL a one character string in the
range '0' to '9'.

(2) SUFFILE a one character string in the
range 'Q' to 'Z'.

(3) INVFILE a one character string in the
rance 'A' to 'P'.

(4) READONLY a boolean value.

(5) SUECNTBI a boolean value.

(6) VAPFLD VARYING or V,FIXED or F.

(7) BITFLD a bcolean value.

PAGE 116

(8) NUMALIGN RIGHT or R,LEFT or ,.

(9) VARELT VARYING or V,FIXED or F.

(10) UNIQUELT a boolean value.

(11) INDEXEXT EXTERNAL or E,INTERNAL or I.

(12) GENERCRT a routine name.

(13) VALIDRTN a routine name.

(14) REFORMAT a routine name.

(15) FLEPOSIT a positive integer <= 4000.

(16) FLDLEN a positive integer. If the
field is indexed then the
maxinum value is 256.
Otherwise the maximum value is
4000.

(17) ELTLIM a positive integer. If the
elements are fixed length, the
maximum value is 4000.
Otherwise the maximum value is
2000.

(18) ELTIEN a positive integer <= 256.

(19) VAIIDARG a hexadecimal character strinq
of length 1 to 100
characters.

(20) NAMEFLD The patch text is of the
form:

(n)<<INTERNALIEXTERNAL>.>fieldname

Where:

n
is the index of the
superfield component to
be patched.

Specified as: a positive
integer <= 16.

NOTE: The index must be
entered or the patch will
te relected.

PAGE 117

Refer to the SUPERFLD
command writeuu for the
superfield components
description.

(21) SECURITY The patch is in the form:

(n) security-code

Where:

n
is the index of the
security code to be
patched.

Specified as: a positive
integer <= 18.

NCTE: The index must be
entered or the patch will
be rejected.

security-code
is an alphanumeric
character string of
length 1 to 8
characters.

EXA MPLE:

The user wishes to patch the field PHONENUM
on associate file 1 to have a formatting
routine of PHONFMT on the third component of
this superfield to be in external form and
have the field name of LOCALNUM.

SYSTER: ENTER:
USEF: PEVIEW 1,PHCNENUM
SYSTEM: (displays the field information.)
SYSTEM: ENTER:
USER: PATCH (REFCRPAT=PHCNFMT,

NAMEFLE=(3)E.LOCALNUM)
SYSTEM: ENTER:

G. The RECS!C (BECCRE SECURITY) COMMAND

This command permits the owner to control access
to a grcup or qrcups of records.

RECSEC DFLDNAME=field-name,
SECURITY=(<<AEI ELETE>.>

security-code<,... >)

PAGE 118

Where:

DFLDNAME
is an existing fieldname which is used to
define which file record security is to
apply.

Specified as: a valid fieldname.

SECURITY
is a list of up to 18 security codes and
security masks determining who is to be
permitted access to the file. It is
specified as an add-delete code, followed by
a period, followed by the security code,
followed by a colon, followed by the security
mask. The add-delete code is specified as
ADD or A for adding a security code, or
DELETE or D for deletinq a security code.
The security code is an alphanumeric
character strinq of 1-8 characters. The mask
is a two digit hexadecimal code.

The security code is used to compare against
the value in the record security field of a
record to determine whether cr not a user has
access to that record.

NOTE: In the UPDATE mode the record security must
already exist for the file to be able to use
RECSEC. In the UPDATE mode, RECSEC is used to
update the existinq list of record security codes
and masks.

H. The REVIEW COMMAND

This command is used to review the contents of any
descriptcr record cn any descriptor file. This
includes dummy records, file descriptor records
and those records such as RECLEN which are not
unique to the entire data tase.

REVIEW FILE=file-name,
FLDNAME=<*HEADEBjfield-name>

Where:

FILE
identifies the descriptor region containing
the fieldname to be reviewed.

Specified as: the full descriptor region
name or the character suffix of the

PAGE 119

descriptor region.

NOSE: A null value is taken to indicate the
anchor regicn.

FLDNAME
identifies the field which is to be
reviewed.

Specified as: a valid fieldname or either of
the following character strings: *HEADER or
* which will imply a review of the file
descriptor for the descriptor region named
above.

PAGE 120

APPENrIYX A.

A. Descriptor Editor command format.

1. Edit Descriptor*

EDIT MODE =<CREATEIUPDATEIBESTORE>

B. Create Mode ccmmand formats.

1. ADD FtLDNAME=field-name,
TYPE=(FIDTYPE=field-type

<,ALIGN=<RIGHI EFT>),
FOEM= (FLDFCPI= field-format,

FLDLEN=field-length,
ELEMNIN=element-lengt h,
ELEIILII=element-number
<,UNIQUE=<Y IN)>),

ROT3TINES= (CON V=conversion-routine,
FORB'AT=formattinq-routine,
VAID=validation-routine,
VALIDAPG=validation-arqument),

INrEXED=(INDEX=<YI N),
IFLtVAME=field-name
<,EXTINT=<INTlRNAL IEXTEFN AL>,

EXTIEN=-external-lenqth,
SP ANN ED=<Y IN >)

ASSOCED= (ASSOC<YI N>,
AFLEVAME=field-naue),

SUBFILED=(SUBFILE=<YI N),
S FL DNAMlEf ield-name),

STBFIELD(SUBFID=<YI N>,BASEFID=FIELDNAME,
OFfS FT=offset
<,<FIlE=<*filenamel ANCHOR))
or <FILE=<ASSOCIATFDjSUBFILE>,

FlDNVNE 2=field-name >)

2, ADDLIKE FLDNAME=new fildname,
FLDNAME2=other-fielaname

3. CHANGE FLDNAPJE=field-name,
TYPE= (FLDTYPF=field-type

<,ALIGV=PIGHTILET >),
FOIRI= (FLDFO~rt'field-format,

FLDLEN=field-lenqtb,
ELENLE=eleent-length,
ELEMLIM=element-number
<,DNIQUE=<Yl N>)),

FCUTINES= (CONV=conversion-routine,
FOPMAT=formattinu-routine,
VALir=validaticn-routine,
VAIIDAPG=validation-arqument),

INDEXED (INDFX=<Y EN),

PAGE 121

iftrAMF=fied-nare
<,EXl'T~=<IWTERNAII EXTIERNAL>v

EXTLEN=external-lenqtb,
SPANNED=<Yj N)>),

ASSOCED=(ASSCC=(Y N),
AFtDNAME=field-name),

SUPFILEDr (StJEFILE=<YI N>,
SFIDNATIE=field-name),

SUBPIELD= (BA SEFLD=field-name,
StJBFIELD=(SUEFLD-<71Ni>, PASFFLD=FIELDNAME

OFFSEoffset
<.<FlLE=<*filenamef ANCHOR >
or <F1LE=<ASSOCIATEDjSUBFILE>,

FirWNAN 2=field-name >)

4I. CHKPCI N (none)

5. CPEAISUE FLDNAME=control-field-name,
MAXPECS=#-records,
ASSOC=< YI N>,
APLEA?!E=field-name

6. DELET~E FLDNAME=field-name

7. DISPLAY YLDNAME=field-name

8. END (none)

9. FIELDS (none)

10. FILE DESCOK=<Yjn>

11. FLDSEC FlDNAP!E=(field-name<,...>),
SEC9RITY=((<ADDjDELETlE>.>

security-code<,...>)

12. MOVE FLLNAPIE1=nev-lccation-field-lame,
FLDNAIIE2=field-name

13. PRINTE (none)

14,. RECSEC DFLDNAE=fied-name,

PAGE 122

SECURITY= («<ADD I DEIE'IE>. >
security-code:muask(,...>)

15. RENAE FIENAP E1=new-field-nane,
FLDNAME2=old-fieldname

16. RESTORE (none)

17. SAVSIRT STRTNAME=strateqy-name

18. SUPEFFLr FLDNAME=fi~eld-name,
BOUTINES= (CONV=conversion-routine,

FCRfME=fcrmattinq-routine,
VAT~iJ=validaticn-routine,
'ALIDARG=validation-arqument),

FLr1IST= («INTERNAt IEXTEPNA1>.>
field-name<,...>)

C. UPDATE M~ODE Ccmmand Formnats.

1. CHANGE FLDNAME=field-naie,
TYPE= (FLDTYPE field-type

<,ALIGN=<RIGH ILEYT>),
FCPM= (FLDFORM=tielV-format,

FIDLEN=field-lenqth,
ELEMLEN=element-lenqth,
ELEM~Ir=eement-number,
<,IJNIQUE=<Yjn)>),

RCTJTINES= (CONV=conversion-routine,
FORMAT=forimattinq-routine,
VALID=validation-routine,
VALIDATPG=validation -argument)

2. DISPLAY FLDNAMEfield-name

3. END (none)

4, FIELDS (none)

5. FLDSEC FIDNME=field-nane,
SFCURITY=(«<AtDjDFETE>.>

securi-tv-code<,..)

PAGE 123

6. PATCH ifield-name=value <,...*>)

.7. BECSFC EFLrNAHE=field-nare,
SECURITY=(«<ADDjDEE7E>.>

security-code:mask(, *,,>

8. REVIEW FILE=file-name,
FLDNAME=<*HEAlERjIFIElD-name>

PAGE 124

APPENDIX B.

CREATE M0OE

OPERAND REIATICNSHIPS

When creating descriptors there are certain implied
relationships between the various operand combinations that
may be specified. In those cases, the Descriptor Editor
assumes the implied value and over-rides any value specified
by the user. When modifying descriptors the Descriptor
Editor normally interprets a default response to indicate no
change to a particular operand.

The folloving table indicates the default values and the
maximum values for several rarameters of the ADD command.

TABLE 1

CREATE MODE

OPERAND DEFAULT AND MAX~NIM VALUES

DEFAULT MAXIMUM MAXIMU M MAXIMR

FLDTYPE FLDFMT ALIGNMENT FLDLEN ELEMLEN ELEMLIM

A .. F .. L .. 3996-Key Length NA NA

A V L 3994-Key Length NA NA

A FE L 3994-Key Length 256 (FLDLEN)

A VE L 3994-Key Length 255 (FLDLEN/2)

B F L 1 NA NA

BN F R 1 NA NA

BN FE R 3994-Key Length - I--- ---.. -(FLDLEN) -

BP F L 1 NA NA

HX F L 2(3996-Yey Length) NA NA

HX V L 2(3994-Key Length) NA NA

HX FE L 2(3994-Key Length) 256 (FLDLEN)

EX VE L 2(3994-Key Length) 255 -. (FLDLEN/2)

LN F R 4 NA NA

LN FE R 3994-Key Length 4 (FLDLEN/4)

S F -R ..8 NA NA

S FE R 3994-Key Length 8 (FLDLEN/8)

SD F R 5 NA NA
SD FE R 3994-Key Length -5 (FLDLEN/5)

SN F R 2 NA NA

SN FE R 3994-Key Length 2 (FLDLEN/2)

SS F R 4 NA NA

SS FE R 3994-Key Length 4 (FLDLEN/4)

(1) D&fault conversion and formatting routine names are
S- .. inserted.by the editor unless .specified by the user.

The routine names have the format DBXXXYY, where;

"XXX" is either CVT for conversion routine or FMT
for a formatting routine, and

"YY" is "SP". for field type "A" and is the .field
type itself for all other field types.

PAGE 126

APPENtIX C.

PEEDEFINE FIELES

In most cases when the user defines or creates a new
fieldname there is cnly one field descriptor created. There
are, however, some exceptions to this which are enumerated
below.

When the anchor file key field is ccmpletely defined by the
user, the following fields are automatically defined and
added to the list of field descriptcrs.

1. The FILEKEY field is a field defined over the anchor
file key field. This field has all of the
characteristics of the anchor file key field except for
the field name and that it is a readonly field, that is
a redefined field.

2. The fields FREEFOPM and COMMENIS are defined for the
retrieval system COMMINTS is a varying length field
designed to hold any ccmrent the user may wish to place
there. FREEFORM will allow the user to specify his own
particular keywords for the file he is referencing and
he is able to base strategies on these user entered
keywords.

The RECLEN is a predefine field which will appear in each
descriptor region of the data base. This field defines the
record length field which appears cn each variable length
record in a file.

When the user specifies reccrd security for any file, for
the first time, a field is created describina the record
security code that appears in each data reccrd of that file.
This field is placed immediately after the anchor key for
the anchor and associated files, and immediately after the
parent key field on subfiles.

The record security fieldname is created in the following
manner for the different file types"

1. ANCHOR file - the fieldnave is RECSEC.

2. ASSOCIATED file - the fieldname is PECSFC concatenated
to the suffix of the associated file, i.e. 1 to 9.

3. SUBFILE - the fieldname is the subfile control
fieldname concatenated tc PS.

When the user creates a sutfile by the CPEATSUB command the
following fields are defined:

PAGE 127

1. The subfile control field itself which resides either
on the anchor file or an associated file.

2. The subfile key field which is the subfile control
field name concatenated to ID.

3. The subfile parent key field which is a copy of the
parent anchor key field. This fieldname is created by
taking the subfile control fieldname concatenated with
PK.

4. Allowance is made for sutfile record security by
creating the fieldname of subfile control field name
concatenated to FS.

Thf field characteristics of each of the predefined fields
are included in Table 2.

All of the aforementioned fieldnames are included in a
reserved list. These fields cannot te altered by the user
except in the following manner:

To modify FITEKEY, the anchor file key field must be
modified. The predefined fieldnames for record

security cannot be modified in any way and can only be
created through use of the RECSIC command. The RECLEN
field descriptor cannot be modified. The subfile
control field and sutfile key field cannot be modified
once created. The subfile parent key field will only
be changed to reflect changes in the anchor file key
field. The fieldname for sutfile record security can
only be created through use of the RECSEC command.

Table 3 contains the names of the reserved fieldnames.
As subfiles are created, the sutfile control fieldname,
the subfile key fieldname, the subfile parent key field
name, and the subfile record security fieldname are
placed in the reserved fieldname table, which then
become reserved field names sublect to the above listed
restrictions.

TABLE 2

PREDEFINED FIELD CHARACTERISTICS

record(1) subfile (1) subfile (1) subfile

FLDNAME COMMENTS FILEKEY FREEFORM RECLEN security control id parent

ASSOCFIL 1 (none) 1 (none) (none) (5) (none). (none)

SUBFILE -. (none) (none) (none) - (none)- -.(none) (none) (no--- (none) -(..ne).

INVFILE (none) .(none) . .A (none) .(none) (none) (none) (none)

READONLY NO Y NO YES NO YES NO YES

SUBCNTRL NO N NO NO NO YES NO NO

VARFLD VARYING F VARYING FIXED FIXED VARYING FIXED FIXED

BITFLD NO N. NO NO NO NO NO .NO

1UIMAIGN "LEFT :(2) LEFT RIGHT LEFT RIGHT RIGHT (

VARELT -..;--- (onne-)- -(-nne) FIXED (none) (none)- FIXED -(none) _(none)

UNIQUELT NO - (none) NO (none) .(none) YES (none) (none)

INDEXEXT (none) (none) INTERNAL (none) (none) (none) (none) (none)

GENERCRT. DBCVTSB (2) DBCVTSB DBCVTRL DBCVTHX- DBCVTID DBCVTID (2)

VALIDRTN (none) (2) (none) (none) (none) (none) (none) (2)

REFORMAT DBFMTSB (2) DBFMTSB DBFTRL DBFMTHX DBFMTID DBFMTID (2)

FLDPOSIT 2 4 1 0 (4) (4) 4 7

FLDLEN 3988 (2) 3988 4 1 (6) 3 (2)

ELTLIM- -0 0 -100 - 0 0- (6) 0. 0

ELTLEN 0. 0 40 0 0 3 0 0

VALIDARG (none) (2) (none) (none) (none) (none) (none) -(2)

NAMEFLD (none) (none) (none) (none)3) (none) (none)(3) (none) (none)

SECURITY (none) (none) (none) (no(3) (none3) (none) (none)(3) (none3)

(1) Refer to. the text for the derivation of.. the :.ctual fieldnqme.. .:

-(2) 'h atual .ue te fro t e ro anch6rkefiel. -. .

(3) There is no field security-on. these fields unless specified by the

user through use of. the FLDSEC command.

(4) The. value will be determined -at -"FILE" time.

(5) -The value will depend on the "ASSOC" and. "AFLD-NAME'!parameter values

*to the-CREATSUB command.

(6) The actual value will depend on the input value to "MAXRECS" parameter

to the CREATSUB command.

PAGE 129

APPENDIX D.

DESCRIPTOR FILE OVERVIEW

Each descriptor file is an indexed sequential (ISAM) region
Data Set where the key is developed by concatenating an
eight character field name to a seven character file name.
The name of the descriptor file is ccnstructed by appending
a "#" to the six-character data tase name (padded with "$"
if necessary).

The first record of each set of descriptors is called a
header record and has a field name of blanks. This record
is used by the system tc reflect the current status and

level of activity of that file, as well as controlling
access to it, and is composed of fields described in Table

4. The remaining records are the field descriptors,
themselves, and are composed of the fields described in
Table 5.

TABLE 3

PREDEFINED RESERVED FIELDNAMES

1. COMMENTS
2. FILEKEY
3. FREEWORD
4. RECLEN
5. RECSEC
6. RECSECI
7. RECSEC2
8. RECSEC3
9. RECSEC4

10. RECSEC5
11. RECSEC6
12. RECSEC7
13. RECSEC8
14. RECSEC9

TABLE 4

FILE DESCRIPTOR FIELD SPECIFICATION

FIELD FIELD FIELD FIELD ELEMENT ELEMENT
FIELD NAME TYPE. FORMAT LOCATION LENGTH LENGTH COUNT

RECLEN LN F 0 4 0 0

KEY ..- A A F - 1 0 0

FLENAME A F 4 7 0 0

DATAPLEX A F 4 6 0 0

SUFFIX A F 10 1 0 0

FLDNAME A F 11 8 0 0

FILETYPE A F 19 1 0 0

DESCRCT SN F 20 2 0 0

BSELNGTH SN F 22 2 0 0

DESCOK B F 24 0(1) 0 0

SPANNED B F 24 2(1) 0 0

DATA B F 24 4 () 0 0

M TNABLE B F 24 6(1) 0 .

MNTNING B F 25 0(1) 0 0

LOADABLE B F 25 4(1) 0 0

REMAiNS HX F 26 4 0 0

RECSECFP SN F 30 2 0 0

RSECTYCD A FE 1(2) 164 9 18

(1) For bit switches the length field is used to indicate
the bit location within the byte.

(2) For variable length fields the location field is used
.as a variable field index..

TABLE 5

FIELD DESCRIPTOR FIELD SPECIFICATION

FIELD FIELD FIELD FIELD ELEMENT ELEMENTFIELD NAMTE TYPE FORM LOCATION LENGTH LENGTH COUNT

RECLEN LN F 0 4 0 0
KEY A F 4 150
FLENAME A F ' 4 7 0 0
DATAPLEX A F 4 6 0
SUFFIX A F 10 1 0 0
FLDNME A F 11 8 0 0ASSOCFIL A F 19 1 0 0
SUBFILE A F 20 1 0 0
INVFILE A F 21 10 0
READONLY B F 22 0 (1) 0 0
SUBCNTRL B F 22 2(1) 0 0
VARFLD B F 22 4(1) 0 0
BITFLD B F 22 6(1) 0 0
NUMALIGN B F 23 0(1) 0 0
VARELT B F 23 2(1) 0 0
UNIQUELT B F 23 4(1) 0 0
INDEXEXT B F 23 6(1) 0 0
GENERCRT A F 24 8 0 0
VALIDRTN A F 32 8 0 0
REFORMAT A F 40 8 0 0
SPARE HX F 48 8 0 0
NAMECNT SN F 56 2 0 0
FLDPOSIT SN F 58 2 0 0
FLDLEN SN F 60 2 0 0
DFLDLEN SN F 62 2 0 0
ELTLIM SN F 64 2 O0 0
DELTLI " SN F 66 2 0 0
ELTLEN SN F 68 2 0 0
DELTLEN SN F 70 2 0 0
VALIDARG A V 1(2) 52 0 0
NAMEFLD A FE 2(2) 146 8 18
SECURITY A FE 3(2)]46 9 16

(1) For bit switches the length field is used to indicate
.the bit location within the byte.

(2) For variable length fields the location field is usedas a variable field index.

PAGE 132

THE POSITION OF TIEIDS ITIHIN A RECCRD

Fields are positioned in the data record in the order in
which they are created as tc the fcllowing alqorithim. On
the anchor and associated files the order is:

1. RECIEN,

2. anchor file key field,

3. record security field,

4. all packed bit fields,

5. all fixed length fields,

6. all varying length and elemental fields,

On subfiles the order by position is:

1. RECLEN

2, subfile key field,

S3. subfile parent key field,

-. record security field,

-- 5. all packed bit fields,

6. all fixed lenoth fields,

&. 7. all varying length and elemental fields.

The Descriptor Editor maintains three lists of fields for
each descriptor region, one list for each of the folloiwing
fiel d groups:

..1. packed tit fields,

2. fixed length fields including ordinary or unpacked
bit fields,

3. varying length and elemental fields.

The order within each field group is determined by the order
in which the user creates fields within each group. This
ordering may be changed thrcuah use cf the MOVE command.

PAGE 133

TOFIC D.3 - DBIOAE USEE's GUIE

I. INTRCDUCTION

The DBLOAD program is a generalized routine
to be used for either initially loadino data
onto a newly defined file, or fcr updatinq
an existing file. In either case, the
descriptors for the file must have been
completely specified by using the Descriptor
Editor before any loading of data is attempted.
The program is made general by the fact that
each input record read is passed to a
specifically written sub-routine which
identifies each of the fields that comprise
the record, and passes this information back to
DBLOAD for prccessing.

This manual describes the mode of operation
for DBIOAE, LINKEDIT for EBLOAE, and the
parameters necessary tc invoke it. The
procedures to follow for writing a DBLOAD
exit routine are also in this user's guide.

II. LINKEDIT

Since every load will have its own user-written
exit routine, it is necessary to linkedit the
new exit routine with other needed DBLOAD
modules to produce the final executable DBLOAD
module. A standard LINKErIT deck could
be made-up where all the user has to do is
insert the INCLUDE card for his exit routine
and then execute the LINFEDIT step.

As a separate step after the IER!EDIT, the
DBTABLE procedure must be executed. This
puts the new external entry pcint name of
the DBLOAD Exit routine into a dictionary
file that is used by NASIS.

Currently, the DBLOAD exit routine must be
compiled with the PL/1 version f compiler-to
be compatible with DBLOAD.

Appendix B gives an example of a LINKEDIT
for DBIOAD, with the EETAELE step.

III INPUTS AND OUTPUTS

DBLOAD Table 1 lists the major inputs and

PAGE 134

outputs from the DBLOAD proqram.
and produced (output) by the DELOAD
program.

INFUT INPUI DATA SET: This data set contains the
data that is to be loaded to the output
databases. The input must be an indexed
sequencial data set.

DATABASE DESCRIPTORS: This data set is the
previously defined file descriptors for

the database to be loaded.

PARAMETER CONTROL CARDS: This data set
contains the proaraf paramets for
different program functions.

OUTPUT DATABASE: This is the actual files making
up the database. Database can include an
anchor file, associated files, sutfiles,
and indexed files.

EBROR DATA SET: This data set is a copy of
the input records that cannot be loaded to
the database.

MESSAGE DATA SET: This data set contains
error messages and other informational
messages (such as record counts).

PAGE 135

IV. CCNTFOL

The DBLCAD Program is controlled by job control
statements. The jot control statements are
required to execute or invocke the DBLOAD program
and to define the data sets that are used and
produced by the program. The parameter
statements are used to control the functions
of the load.

JOB CONTROL STATEMENTS

DBLOAD Table 2 shows the lot control statements
necessary for executing or working the DELOAD
program.

DBLOAD Table 2. Jot Contrcl Statements for
the DBLOAD program

STATEMENT USAGE
JOE This statement initiates the job.
STATEMENT

EXE This statement specifies tte program name
STATEMENT (PGM = DBLOA) or, if the job control

statements reside in a procedure library, the
procedure name.

SYSPRINT This statement defines a sequencial message
DD data set.
STATEMENT The data set can be written onto a system

output device, a manetic tape volume or a
direct access volume. (This DD statement must
be present)

PRTOUT This statement defines the informational data
DD set written by the Troqram. DCB = (RECFM=FA,
STATEMENT LRECL=133, BLKSIZE=133). DENAME fixed.

CAEDIN This statement defines the parameter card
DD data set that contains the prooram parameters.
STATEMENT Data set resides in the input stream. DDNAME

fixed.

ERFOR This statement defines the error data set that
DD will contain records that cannot be loaded to
STATEMENT The database. DDNAE is not fixed.

EATABASE These statements define all files that are

PAGE 136

DD in the database (descriptors, anchor,
STATEMENTS associated, subfiles, indexes).

INPUT This statement defines the input data set
DD that contains data to be loaded to database.
STATEMENT Must be an indexed sequencial data set.

DDNAME not fixed.

STEPLIB This statement defines the library where the
DD production or latest version of the EBLOAL
STATEMENT module resides.

STATIC This statement defines the STATIC (statistics)
DD file.
STATEMENT
ESETAB This statement defines the external static
DD dictionary entry points file.
STAT EMENT

PAGE 137

PARAMETER STATEMENTS

The DBLOAD program is controlled by
parameter staterents. The parameter
statements are enterd in the input
stream (CARDIN DD Statement) as required.
Following is a list of DBIOAD proqram parameters
with their functions:

'filename'
identifies the database to be loaded.

Specified as: a 1-6 character name of
the database.

'mode'
identifies the mode of operation for the
program

Specified as: a one character code,
'L' for load mocde, 'U' for update mode,
and 'R' for restart mcde.

Default: load mode is assumed.

'exit'
identifies the name of the user exit
routine which is to be called to
describe the ccmposition cf each input
record.

Specified as: a 1-7 character name of
the user exit routine entry point.

Default: the exit name is constructed by
prefixing the file name with an 'X'.

'format'
identifies the name of the key field
reformatting routine.

Specified as: a 1-8 character name whose
first character must be alphabetic and
whose remaining character must be

alphanumeric.

Default: no key formattina routine is
assumed.

'anchor'
indicates whether the anchor file is
to be loaded

Specified as: a one character code,

PAGE 138

'Y' for yes, and 'N' for no.

Default: the anchor file will not be
loaded.

'associate'
identifies the associate files to be
loaded.

Specified as: a multiple element
parenthesized list of associated file
suffices (1,2,...9)

Default: no associated files will be
loaded.

'subfile'
identifies the suhfiles to be loaded.

Specified as: a multirle element
parenthesized list of subfile suffixes
(PS,...)

Default: no subfiles will be loaded.

'index'
indentifies the fields to be inverted
with this load.

Specified as: a multiple element
parenthesized list of 1-8 character
field names (FIELD1,FIELD2,...)

Default: no index files will be loaded.

'input'
identifies the fully qualified name of
the input data set from which DBLOAD is
to obtain its data.

Specified as: a 1-35 character fully
qualified dataset name.
Default: no index files will be loaded.

'input'
identifies the fully qualified name of
the input data set from which DBIOAD is
to obtain its data.

Specified as: a 1-35 character fully
qualified dataset name.

Default: the input dataset name is

PAGE 139

constructed by appending the qualifier
*.INPUT' to the file name.

*generate'
indicates whether or not large numeric
keys are to be generated for the output
data base.

Specified as: a one character code, 'Y'
to indicate that large numeric keys
are to be generated, and 'N' to indicate
not to generate keys.

Default: Keys will not be generated.

'error'
identifies the fully qualified name of
the error dataset to which invalid input
records are to be dumped.

Specified as: a 1-35 character fully
qualified dataset name.

Default: the error dataset name is
constructed by appending the qualifier
'.EFROR' to the file name.

'errors'
identifies the number of non-critical
data errors that are allowed before
terminating the program

Specified as: a 1-4 digit number.

Default: a limit of 100 errors is
established.

Examples:

1. The user wants to load a file with the
anchor, associated file 1, subfiles
Y and Z. The key has a formatting

routine entry point name of DBFMTLN.
No fields are to be inverted. User
exit routine is XEXIT and input file
DSNAME is filerame.input. Appendix A
illustrates a run deck for above load.

V. OPERATING MODE

A. Load Mode

In the load mode, EELCAD simply opens the

input dataset for input and the file for

PAGE 140

output and begins processing.

B. Update Mode

In the update mode, DBICAD opens the
input file for innut and the output file
for direct output and begins processing.

C. Restart Mode

In restart mode, DBIOAt opens the file for
update. It uses the restart key to position
itself in the input dataset. It then
reads the next sequential record. It is
now ready to begin processing.

VI. DBLOAD EXIT POUTINES

A. Introduction

As mentioned earlier, DBLCAD passes each
input data reccrd to a user written exit
routine for analysis before actually
writing any data to tle file. This
routine has the function of identifying
each data field in the input record with
a field name, indicating its starting
location in the innut record, and
specifying the lenoth of the data. If
the data field is on a sutfile, the exit
routine has to identify the subfile control
field name before any subfile fields can
be put.
Further, the rcutine can specify that
the field should have leading and/or
trailing blanks stripped off by DBLOAD,
that the field be skipped, that the record
be skipped, that the load be terminated,
or that subseouent calls to the exit
routine must indicate when a new key is
to be located to the output file. This is
used in the case of multiple input records
for an output file key.

When the update mode is used, the exit
routine must indicate if this is a record
to be deleted, a record to be added, or
a record to be replaced.

B. Exit Routine Parameters

The calling sequence used by DBLCAD to
transfer contrcl to the exit routine is:

PAGE 141

CALL exitname (input-data, user-ptr.
bypass-switches)

Where:

'exitname'
is the entry pocint name of the routine
to be called.

*input-data'
is a varying length character string
(maximum size - 4000 bytes) that
contains the entire input data record,
includina the fcur-bvte record length.

'user ptr'
is an external rcinter that points
to the user allocated structure.
This structure ccntains the field
names, the field lengths, the field
offsets, and the subfile suffixes.

,bypass-switches'
is a strina of sixteen bit switches
to be posted by the exit routine to
further define the status of the record
for DBLOAr. The order and meanings of
the various bits are:
Bypass Call - tyrass subsequent calls
Bypass Reccrd - bypass this record
Forward-Scan - delete leading blanks
on fields
Backward-Scan - delete trailing
blanks on fields
Terminate Pgm - terminate the program
Delete-Reccrd - delete this record
Replace-Record - replace this record
Update-Record - update this record
(fields)
New-Key - locate this new key
Bits 10-1E - unused by DBLOAD

C. Exit Routine User Structure

The following sample exit routine (appendix
C)

illustrates how to declare and use the
user based structure. First, set the
refer dimension equal to the maximum
number of fields and elements (one field
and a multi-element field with 10 elements
would be 111 plus number of subfile control

PAGE 142

fields that may be assigned.

Next allocate the based user structure. Next
assign the key-name, the key-ptr to the
location of the key within the input record,
and assign the key field length. Each
entry into the exit routine will then
reuire the field names to be assigned,
the record, the field sizes assigned,
and the subfile suffixes assigned if
field is a sutfile control field.

NOTES:

1. The Key of the inrut record can be
anywhere in the record.

2. The input data record includes the
record length field.

3. Large numeric keys can be generated for
the output dataset if desired.

4. The number of elements in the user
structure is computed by accumulating
the total number of fields and/or
elements in the input record.

5. Any field whose length is zero or
whose pointer is null, is bypassed.
If subfile suffix is not blank, new
subfile record is located.

D. Sample DBLOAE EXIT Routine

The following sample exit routine is
shown to illustrate the above narrative.
The field has a key, cne anchor file
field, and two subfile fields with two
elements each. The fields are all in
fixed locations. After initial allocation,
the only processing required is to scan a
record type field for the code *X' which
is used to indicate to bypass this
record. Note that all trailing blanks
will be stripped off and that every
input record is a new key and will have
an output record located for it. The
sutfile control field 'KID' has a field
size of zero. The sut-suffix byte for
this field gets assigned a 'Z' to indicate
this is a subtfile control field.

Loading Multi-files

PAGE 143

For the most efficient use cf DBLOAD, it should
be noted that whenever possible, NC field
should be inverted while file is beinq loaded.
The DBPAC inversion process is extremely
faster to load an entire file and then
invert the desired fields with the inversion
utility, invert. This module uses specialized
techniques and an OS sort utility to build
the index files.

Subfiles should never be loaded independently of
the anchor file, however. DBPAC must generate
the subfile keys and post the subfile control
field for each subfile record.

PAGE 1t44

APPENDIX A
SAMPLE JOB DECK

//C RDGJOE (9350,SYST,060) ,NEOTERICS
f/tBLOAD EXEC PGM=DB.LCAr,FEGIOW=800K
//STrEPLIB DD DSV=NASIS.JCBIIB,DISP=SB
//SYSP1RINT flD SYSOUT=A
//ERROR DD fSFllENAME.EFPOP,UWIT=2314

VOI=SEE=WORKO1,isP=(NW,KEEP),

DCB= (DSORG=IS,B2ECFIM=VPEC=4OO1,BIKSTZE=40O5,
1/ RKP=5,KEYLEN=4,OPTCD=L) ,SPACF= (CYL. (3,1))

//INPUT DDU DSN=FILENA!1E.INPUT,UN1T=2314,
/1VO1=SER=ORK01,DISPCD,DCB(SOPG=IS,
// RECF!=V,LREC=401,BlKSIZE=40O5,RKP=5,
// KEYIEN=4)

//FILE$$ DD DSN=VASIS*FIE$$YIIE$,DISPSHR1
//FILE$$# DD rSN=NASIS FItE$$.FILE$$#,DTSP=SHR
//FILE$$1 DD DSNiASIS.FItE$$.?IIE$$1,DISPSHR
//FILE$$Y DDn rSN=I4ASIS.FILE$$.FILE$$Y,DISP=SHR
f/Fl LE$$Z DD DSN=NASIS. FILE$$. FILE$$Z,,DISP=SHB
f/STATIC DD DSN=NASIS.SIAIIC,DISP=SHB
//ESDTAB fin rSNlNASISLCAflTAE,risP=sfHR
/cARLIN DD *

MODE=L
EXIT=XEXIT
FORMIAT=DBF!1TtN
AlVCHOR=Y
ASSOCIAT 1
SUFFILE= (Y,Z)
INPUT=FILENAME .INPUI
F IlFN A tF =FEF$ $

PAGE 145

APPENDIX B
LINKEDIT FOR DBIOAD

//CPCDGLK JOB(9350,SYST,015),NEC EEIRICS,REGION=132K
//IKED EXEC PGM=IEFL,

//PAB=XRE,LIS,ET,SIE15O,40K)I
//SYSPRINT Dr SYSOUT=A
//SYSLIB DD DSNNVASIS.JCBLIB,DISP=SHfl

//Dr DSN=ANSIS.TESTLIP,tISP=SHf
fiDD DSNSYS1.PL1LIB,DISF=SHE

//117&SIS DDl rsN=ANSISOEJLIB,DISP=SHR
//SYSLM1OD DD DSN=NASISTESTLIEI(t)?LOAD) ,DISP=SHB
//5-YSUT1 DD DSN=8FSYSCT1,UNTT=SYSlASPACE=(1024,

// (200) 20)) SEP= (SYStMCD,SYStII) rECB=BLKSIE=
1024 //SYSLIV rt *
INCLUDE NASIS (DBCAlL,DBlCAD,PRTFILE,FPA!1,
flP[PAC)
INCLUDE NASIS (DBUPDS'T,DBDBIO,JWEXITS,
DBEXITX, DBRTNS)
INCLUDE NASIS 4EXITRTN)
ENTRY IHENTIRY

/* //LBTABLE EXEC DBTABLF,MODUtE=DBICAr,MCDLIE=JOBLIB,
// ESrTAB=LOAD AB

//RUVETAB*SORTOUT DD ECB=NASIS.ESY!AE

PAGE 146

APPENDIX C.

/* XEXIT: TEST EXIT ROUTINE FOR RDBLOAD FOR THE FILE
DBETDB */

/* COMPANY: NEOTERICS CORPCRATION, CLEVELAND, OHIO
*/

/* CLIENT: NASA LEWIS RESEARCH CENTER

/* SYSTEM: NASA AERCSPACE SAFETY INFORMATION SYSTEM
(NAS IS) */

/* THIS IS A SAMPLE EXIT RCUTINE FCR DBLOAC FOR DB2.
IT */
/* SHOWS 1OW TO USE THE USER STRUCTURE TO ASSIGN FIELD
NAMES, FIELD */
/* OFFSETS, AND FIELD SIZES. IT AISC SHCS HOW TO USE THE
EXIT */
/* ROUTINE SWITCHES TO ACCOMPLISH VARICUS OPTIONS TO THE
LOAD. */

XE(IT: PROCEDUF(INPUT CDATA,USER_PTP,BYPASS SWITCHES);

DECLARE BUILTTN FUNCTIONS USED BY EXIT

DCL (NULL,ADDR) BUILTIN:

DCL INPUT DATA CHAR(4000) VAR; /* INPUT RECORD
*/

DCL USERPTR FOINTER; /* USER POINTER

DCL BYPASS SWITCHES CHAR (2); /* PROGRAM SWITCHES

/* DECLARE SPECIAL SWITCHES FOR PROGRAM
OPTIONS */

DCL 1 SPECIALSWITCHES BASED(SW_PTR),/* SPEC PROGRAM
SWITCHES */

2 BYPASS_CALL EIT(1), /* SKIP FUTURE CALLS
TO EXIT */

2 BYPASS RECORE BIT(1), /SKIP THIS RECORD

2 FORWARD SCAN BIT(1), /* STRIP OFF LEADING
BIANKS */

2 EACKWARD_SCAN BIT(1), /* STRIP OFF
TRAILING BLANKS */

2 TEPMINATEPGr BIT(1), /ABORT THE LOAD

PAGE 147

2 DELETE_RECOR PFIT(1), /* DELETE THIS
RECORD /

2 REPLACE_RECOFD EIT(1) /* REPLACE THIS
RECORD */

2 UPDATE RECORD BIT (1), /* ADD THIS RECORD

2 NEW_KEY BIT (1), /* LOCATE THIS NEW
KEY */

2 SPECIAL_FILL BIT(7); /* UNDEFINED

DCL ON BIT(1) STATIC INIT('1'B); /* ON BIT SWITCH

DCL OFF EIT(1) STATIC INIT('O'B); /* OFF BIT SWITCH

DCL ONETIME CHAR(1) CONTROLLED; /* ONE TIME SWITCH
*/

/* DECLARE USER STRUCTURE TO BE ALLOCATED
BY EXIT */
/* ROUTINE AND DO THE FOLLOWING:
*/
/1 AND CONTFOt FIELD AND ELEMENTS TO BE PUT */

/* 2. ASSIGN FIELD NAMES.

/* 3. ASSIGN FIELD PCINTERS TO OFFSET IN INPUT
RECORD */

4. ASSIGN FIELD SIZES.
*/

DCL 1 USERSTRUC EASED(USER_PTR), /* USEP BASED
STRUCTURE

2 DIM FIXED BIN(15), /* DIMENSICN OF
AREA S */

2 FEY_NAME CHAB(8) /* KEY NAME

2 KEY_PIR PTR, /* KEY POINTER

2 KEYSIZE FIXED BIN(15),/* KEY SIZE

2 ITEMS(DIM_EFER REFER /* REFER DIMENSION
FO ARRAYS */

(USER STRUC.rII)) /*
*/

3 FIELDPT PTR, /* FIELD POINTER

3 FIELD-SIZE FIXED BIN(15), /* FIELD SIZE

3 SUBSUFFIX CHAR(I); /*SUPFILE
SUFFIX:FIRST SUB- */

/* FILE SUFFIX IS
CTEL FLD */

ECL DIM REFER FIXED BIN(15); /* REFER DIMENSION

PAGE 148

TO BE ASSN */

/* DECLARE EIIT ROUTINE PCINTERS
*/

DCL PTR1 POINTER; /* POINTER FOR BASED
RECOND */

DCL SWPTR POINTER; /* POINTER FOR
SWITCHES

/ DECLARE RECORt OVERLAY

DCL 1 RECCRD_IN BASED(PTP1), /* RECORD OVERLAY

2 RLTH CHAR(4), /* RECORD LENGTH
2 RFILL CHAR(3), * FILLER

2 EMPNO CHAR(4), /* EMPLOYEE NUMBER
*/

2 RTYPE CHAR(1), /* RECORD TYPE:IF
'X' TEEN */

/* SKIP THIS RECORD

2 EMPNAME CHAR(20), /* EMPLOYEE
NAIE STRIP OFF

/* TRAILING BLANKS

2 EMPAGE CHAR(2), /* EMPLOYEE AGE

2 KIDNAME1 CHAR(10), /* FIDNAMESTRIP OFF

2 KIDNAME2 CHAR(10) /* TRAILING BLANKS
*/

2 KIDAGE1 CHAR(2) /* FIDAGE STRIP OFF

2 KIDAGE2 CHAR(2); /* TRAILING BLANKS

PTR1=ADDR(INPUTjDATA): /* SET RECCORD PCINTER

SW PTR=ADDR(BYPASSSWITCHES); /* SET SWITCHES POINTER
*/
IF ALLOCATION(ONETIME) THEN /* IF USEP STRUC
ALlOCATED */

GOTO CHECK_RECORD; /* GC AND CHECK RECORD
*/
ALLOCATE ONETIME; /* TURN ON CNE TIME
SWITCH */
DIN REFER_8: /* SET DIMENSION TO
MAIMUM /

/* NUMBER OF FIELDS,
CONTRL */
ALLOCATE USER STRUC; /* FIELDS, AND ELEMENTS

±5 =(LOxId&&ns as
aaowaa

z alias e/ ±,z&=(o)[iaais-aas

±5 5=*)xI& as
z uaian KD S *z= (OxIlas -Ils

±. =(8)xaisaSi

lo= (8) azis-a 'Hi&
±z= (s)aziscvuijI

0L= (E)azsant~
"Z= (z)azisaqhi
A.' sazis

a'Iait ?IDISSV S oz=(0)az.is-aia

(mu C~a~aaav= to aidU'aidi
(zawymaim) aaQQv=(aidQ ia

aiaiw ioait~oa Ixnu~ t riIR= (9) aid- u ia
" (La~auix) aaav =(0 aid-axIn
(t a wv i i aciciv= (ft) aid-a u ia

aiaiai 'iudt~oD aina inti ± f(E Ldau'Iia
±(af)VWa) aaV= (Z) alda 'Hl

saiasiao aiaija giissy * (awvmawa) aa~iv= (t)aId-a ui&

± avII. 51cCzj wvaw cIiia

OKI cao~aa afiS * .,a1ixe=()awvN-a1'Ii&
, Anaaixb= (G)amivkClaxir

aNO agooad aL1Ssi .I~.EaVUI

sawvtu alai& ADIssv * .~via=Lavc~L

ZZIS Lx UIfISSY 2I~~

awva ~ / uaixio ±Ias S .oda.atC

3faIS H~I WIa DI RIi~SSV */aaaza-wia= wia

6tL aD~

PAGE 150

SUE_SUFFIX(8)=' 9;

BYPASS CALL=OFF; /* WILL CALL EXIT ROUTINE
*/
FORWARD SCAN=OFF; /* DON'T STRIP OFF
LEADING BLANKS */
BACKWARDSCAN=ON; /* STRIP OFF TRAILING
BLANKS */
TERMINATE PGM=OFF; /* DON'T TERMINATE THE
LOAD */
DEIETE_RECCRD=OFP; /* NOT AN UPDATE RUN
*/
REFLACE RECORE =OFF;
UPEATE_RECORD=OFF;
NEW KEY=ON; /* LOCATE THIS RECORD
*/
DISPLAY ('USER STRUCTURE ALLOCATED IN EXIT ROUTINE.');
RETURN; /* RETURN TO DBLOAD
*/

CHECK RECORD: /* CHECK RECORD TYPE

IF RTYPE='X' /* IF X RECORD TYPE,
*/

THEN BYPASS_RECORD=ON; /* BYPASS THIS RECORD

ELSE BYPASS_RECORD=OFF; /* OTHERWISE, PRCCESS IT

RETURN; /* RETURN TO DBLOAD
*/
ENDC; /* END OF ROUTINE

PAGE 151

TOfIC D.4 - INVERSION PROGRAM USER'S GUIDE

I. INTRODUCTION

The NASIS inversion program is two maintenance
programs (DBIVRT1, DBIVPT2) and an OS sort utility
for data base file creation. The purpose of
the programs is to take data from certain fields
of a database and to post this data to an
inverted index file. This operation can be done
automatically by DEPAC during a normal file loading
operation, but it is very time consuming and could
therefore leopardize the successful completion
of the load. Further, by separating this function
out, in this manner, the capability of creating
inverted indices after a file has been loaded and
used is added to the repertoire of the NASIS
system. Finally, this separaticn also permits
the use of specialized techniques suitable
specifically to this furction tc reduce the amount
of time required for the entire process of loading
and index creation.

This manual describes the mode of operation,
invoking DBSIVRT, gives examples of use, and
gives additional prograr notes.

II. MODE OF OPFRATION

The inversion module can create up to ten inverted
index files concurrently. Further, these files
can each contain data from up to five separate
but related fields. The user can process a
specific number of input records, a range of
input records, or the entire file. Restart
capability is provided at the field reading
step, the sort step, the index file creation
step, and the index file translation step.

Step one (invert 1) reads a dataplex, strips off
the field being inverted, concatenates the field
with the anchor key, and writes the concatenated
string on a sequencial data set.

The second, or sort step, invokes the OS sort
utility and outputs a sorted sequential file.

Step three (invert 2) reads the sorted variable
data set and creates a CISAM file. If the field
is not indexed with external format, this file
becomes the database index file.

If the field is indexed with external format

PAGE 152

step three reads the QISAM file created by step
three, translates the keys with field formatting
routine, and creates translated index file.

II. INPUTS AND OUTPUTS

INVERT Table 1 lists the major inputs and
outputs from the INVERT1 program.

INVERT Table 2 lists the major inputs and
outputs from the INVERT2 program.

IV. CONTROL

The INVERT programs are controlled by job control
statements and parameter statements. The lob control
statements are required to execute or invoke the
INVERT programs and to define the data sets that
are used and produced by the programs. The
parameter statements are used to control the
functions of the inversion.

JOB CCNTFOL STATEMENTS

INVERT table 3 shows the lob control statements
necessary for executing or invoking the INVERT
process.

PARAMETER STATEMENTS

The INVERT process is controlled by parameter
statements. The parameter statements are entered
in the input stream (CARtIN DD Statement) as
required. Following is a list of INVERT program
parameters with their functions:

'FILENAME'
identifies the database that the field being
inverted is on. Specified as a 1-6 character
name.

'field'
identifies the field(s) to be inverted.

Specified as: a 1-8 character name as
entered in the file descriptors. Multiple
fields must be entered as rultiple element
list. Fields teinq inverted to same index
file must be kept together.

Example: (A1,A2,A3,B1,B2,C) First three
fields go on same index file, fields B1,
R2 go on same index file, field C goes on

PAGE 153

index file by itself.

'model
identifies the program mode of operation.

Specified as: a one character code,
F - initial pass, step one
R - restart at step one
3 - restart at step three (Step after Sort)
T - restart at translaticn phase of step 3

Default: the initial pass ('F') is assumed.

'records'
identifies the number of database records
to process.

Specified as: 1-6 numeric characters.

Default: 999,999 records (or entire dataplex).

'range'
identifies a range of file keys to process.

Specified as: a multiple element list of
two file keys, first key being the one to
start at, second key being the one to end at.

Example: (KEYO5,KTY10) Keys 5-10 will be
inverted.

Default: Entire file is assumed.

PAGE 154

INVERT Table 1. tata sets used (input) and
produced (outputs) by the INVERT1 program.

INPUT DATABASE: These data sets contain the data to
be inverted. The descriptors are also needed
to define the data fields.

PARAMETER CONTROL CARDS: This data set contains
the program parameters for different proqram
functions.

RESTART FILE: This data set is needed if
program is invoked in restart mode, to
provide a restart Key.

OUTPUT OUTPUT FILE: This data set is a CSAM file
with the value of the field being inverted
concatenated with the file Key. This file becomes
the input to the OS scrt step.

MESSAGE DATA SET: This data set contains error
messages and other informaticnal messages (such
as record counts).

PAGE 155

INVERT Table 2. Data sets used (inputs) and
produced (cutputs) by the INVERT2 program.

INTUT INPUT FILE: This data set is the scrted output
from the OS sort utility step.

DATABASE DESCRIPTORS: This data set describes
the database.

PARAMETER CONTROL CARDS: This data set contains
the program parameters for different program
functions.

OUTPUT PLEX FILE: This data set is in the form of an
index file with the internal field value as the
Key. This file becomes the input to the
translation routine to convert to the external
form. Produced only if external indexing.

RANGE FILE: This data set is the index file
with the internal format. It is produced only
if a range of file Keys was specified as a
program parameter.

DATABASE INDEX PILE: This data set is the final
index file and is part of the database.

MESSAGE DATA SET: This data set contains error
messages and other informaticnal messages (such
as record counts).

PAGE 156

INVERT Table 3. Jcb Ccntrcl Statements for
the INVERT process.

STATEMENT USAGE
JOB This statement initiates the job.
STET MENT

EXC This statement specifies the program name
STATEMENT (PGM=INVERT1), (PGM=INVERT2), or, for the

sort utility, the sort prccedure name (SORTD).

STIPLIB This statement defines the library where the
DD production or current version of the INVERT
STATEMENT modules reside.

SYSPFINT This statement defines a sequencial message
DD data set. The data set can be written onto a
STATEMENT system output device, a magnetic tape volume,

or a direct access volume. (This DD statement
must be present).

PBRICT This statement defines the informational data
DD set written by the program. DCB={RECFM=FA,
STATEMENT LRECL=133, BLKSIZE=133). DDNAME is fixed.

CARDIN This statement defines the parameter card
DD set that contains the program parameters.
STATEMENT Data set resides in the input stream. DDNAME

is fixed.

DATABASE These statements define all the files that
DD are in the database (descriptors, anchor,
STATEMENTS associated, subfiles, indices).

FIIE These statements define the QSAM files that
DD are output fror step one. Numeric integer
STATEMENT 1-0 is concatenated to 'FILE' to make the

appropriate DDNAME. Minimum LRECL is 18
(DSORT utility).
LRECL is sum of file Key length plus maximum
field length.

PAIM This statement defines the restart file for
DD step 1. DCB = (RECFM=V, IRECL=255).
STATEMENT DDNAME is fixed.

SOFTIN These statements define the sorted QSAM
DD data sets from the sort step. Numeric
STATEMENTS integer I-Q is concatenated to 'SORTIN'

to make the appropriate DDWAME.

PLIK These statements define the temporary
DD index files with the internal field

PAGE 157

STATEMENTS format. The DCB will be the same as the
final index file.

PAGE 158

V. EXAMPLES OF USE

The INVET process may be set up as one job
with three separate sters (INVERT1, SCRTD,
INVERT2). If many fields are being inverted at
one pass, however, it is recommended to split
the three steps into separate jobs since these
will be multiple sorts.

The most efficient method is to invert as many
fields as possible in the same pass. Database
records only have to be accessed one time for
multiple fields. The multiple sorts could then
be set up as separate icbs.

Invert all associated fields separate as one pass from
anchor fields. This is very efficient because
only the associated file is accessed.

Example one shows two fields, 'EMPAGE' and
'EMPNAME' being inverted at the same time. The
database, 'FILE$$' has a Kev length of 4. Since
the EMPAGE field is only two tytes in length
the minimum, LRECL of 18 is used for the FILE1
DD statement (2+4). The EMPNAME field is varying
with a maximum length of 16, therefore, LRECL of
20 is used for FILE2 DD statement (4 + 16).

Step 2 is an example of the IPM OS sort utility,
SORTD. For further explanation, see IBM publication
order no. GC28-6543-7, CS SOFT/FERGE Program. The
sort control card specifies the sort field to start
in first position of record and go for 6 bytes.
The field is character and sort will be in ascending
order. The size is 2C0 records. Note that if
condition code from STEPI is not less than 4, STEP2
will not be run. Only sort for the EPPAGE field
is shown, sort for EMPNAME field would be similar.

Step 3 builds the final index files for the
EMPAGE and EMPNANE fields. Note that if the
sort step passes a condition code greater than 3
step 3 will not be run. A plex DD statement is
needed for the EMPAGE field because of external
indexinq. The two INDEX DD statements catalog the
index file entries after successful completion of
the run. Note the MODE parameter is '3' for
step 3.

Note that all data sets are deleted upon
successful completion of job step. Cnly final index
files for database should be kept.

PAGE 159

IF range of Keys had teen specified, final
output index file would have a DSAME of RANGE.
FIIE$$.FIELINAME. This data set is then used to
merae with ctber range index files.

//iEXAMPLE1 JOE (9350,SYST,C15), NECTIFRICS
//STEPI EXEC FGr1=I1VVERT1, PEGICV=50!(
//ST'EPLIB DD DSN=NASIS.,JOBLIB,DISP=SHR
//SY SERINT DID SYSOIT=A
//PRTOUT DD SYSOTA, DCB=fRECFM=PA,LPECL=133,

BIKSIZEI=133) //rt* DD
DSN=I4ASIS.FILE$$.FILE$$#, DIST=SHP
//rD DD DSW=NAS1S.FILE$$.FILE$$, DISP=SHR

//tDA DD DSkV=NASISFIE$$.FIlBUSA,DISP=SHP
f/MB DD DSt4=NASIS. FILE$$. FILE$$13,DISP=SHR
f/ILE1 DD DSN=SORTIN.FILE$$.E1EPAGE,UNT2314

1f VCL-SERWVORKOI,flCEP(P1.ICFM=FE,LWECL= 18,
// BLKSI7E=3600), SPACE=(CY1,3) ,DISP= (NEW,

KEEP,LILETE) //FIIE2 fiD
DSN= SORTIN,FILE$$.EVA!E,NT=2314,

//VOL=SEERWORK02,DCB=(RECFM=FB,tRECIt20,
// BLKSIZE=4000) ,SPACE=(C!L,3) ,DISP(fNEW,

KEEP,DELEIE) //CARDIN ED*
FIIEVAMPEs PILE
PIELD=(EMPAGE, EMPVA!1E)
MODE=F /*

//STEP2 EXEC SCPTD,REGION=98K,CONt(4,L!)
//SORT.SORTIN DD DSN&M'ESORTIV.FTlE$$.EPIFAGF,

// UNIT 2314,VOL=SER=WORKO1,rCE= (PECF! FB,
// LRECL=18, BLKSIYE=3600), DISF=(C1D,DEIETE,

KEEP) //SOBT.SOPTCUT Eit
DSVAMIE=SORTO UT. FILES$.*EMPAGE,

//UNIT=2314,VOL=SEWOK2,risp(NEW,KEEP,DELETE),

SPACE=(CYL,r3),DCB=(IECFM=FE,LRFCL=19,ELKSIZE=3600)
//SDRTSORTWK01 DD UNIT=23114,SPACF=(TEK, (101 ,,CONTIG)
/,'SORTSOFTVK02 DE TNT2314,SPACEVVKfi, (10),,CONTITG)
//SOR'T.SORTWK03 Dfl UNIT=2311&,SPACE=fTRK,(10),,CONTIG)
//SOIVE.SOIITWKO4 DDl UNI =2314,SPACE=,tTRK,(10),,CONTIG)
//SOwR.SORTWKO5 DE UNrr=2314,SPACE=VTRK, (10),,CONTIG)
//sDRT.SO1RTVg06 DD URITj2314,SPACE=(IIRV, (10) ,,CONTIG),

// SEP= (SORTIRK01,SoRIWVK02,SOlETWK03,SORTWK4,
/1 SORTVK05)

//SORT.SYSIN fit *
SORT FIELDS=(1,6,CH,A) ,SI7E=200

//SflEP3 EXEC FG=INVET2,EGICN5CK,CCD=1(4,LT)
//SYSPRINT nfD SYSCT=A
//S-TEPLIB DD DSV=NASISJOBLIB,DISP=SHP
//FPVEOUT DD SYSOUT=A,DCB=(FECFM=FA,LRFCL=133,

// BLKSIZF=133)
I/DD# DD DSN=NASIS. FILE$$. FIE$$#, DISPSHP

PAGE 160

//I)D DD DSW=NASIS.FILES$.FILEI$,DISP=SHR
//S[)RTIN1 DD DSW=SORTOU7.FILE$$,EMfAGE,

DISP= (CLD, DELETE, KEEP) UNTT=2314,DCB=
fRECFM=FB, LRECL=18,BLKSIE=360G),
VOL=SEB=WOPK02 //SCRTIV2 DD

DSN--SORTOUTFIIE$$.EMPNAMEEISP=
(OLDDELETEKEEP),UNIT=2314,rCB=(BECFt4=YB,
LBECL=20,BLKSIZE=4000),VCL=SF"B=WORK02

//PLEYI DD DSW=PLEX*FILE$$*EMPAGEDISP=(NER,
DELETE),UWIT=2314,rCP=(rSO'RG=TSRECFF-=V,
LRECL=4001,BLKSIZE=4005,CETCr=tBFP=5,
KEYLEV=2),SPACE=(CYL,(3,1)),VCL=SEE=WORK01

//INDEX1 DD DSV=VASIS.FILES$AUWIT=2314,rISP=(NEW,
CATLGDELETE),DCB=(DSCPG=ISPECFP=V,
LPtCL=4001,BLKSIZF=4005,RKP=5,KEYLEN=2,
OPTCD=L),SPACE=(CYI,(3,1)),VOL=SEB=FDA011

//INDEX2 DD DSN=NASIS.PILE$$.FILE$$RUFIT=2314,
DISP=(NEVCATLGD.EIETE),DCP=(rSCliG=IS,
RECFM=VLRECL--4001,BLKSIZE=4005,RKP=5,
KEYLEV=16,OPTCD=L),SPACE=(CYL,(3,1),VOL=
SEB=FDA011

//CA R Ell N DD *
FILERAME = FILE
FIELD (EMIPAGEEPPNAME)
MODE 3

PAGE 161

TOfIC D.5 - INDEX MERGE PROGRAM USEE'S GUIDE

I. INTRODUCTION

The merger program (DBINDM) is a special program
for the merging of index files. The purpose of
the program is to take two index files (created
from a like data base) and merge them to a new
index file or inplace to the accepted current
index file. Further, the user is given the
options to process duplicate list elements.

This manual describes the mode of operation for
DBINDM, the parameters used tc invoke DBINDM,
gives examples of its use, and gives additional
program nctes.

TI. INPUTS AND OUTPUTS

DBINDM Table 1 lists the malor inputs and
outputs from the OBINDM program.

DBINDn Table 1. Data sets used (input) and
produced (output) by the DBINDM program.

INPUT CURRENT INDEX FILE: This data set contains the
current database index lists.

UPDATE INDEX FILE: This data set contains the
new or update postings to be merged with current
index file. This data base is usually created
by the INVERT program and has a DSNAME of
'RANGE. 'FILENAME. FIEDNAME.

DATABASE DESCRIPTORS: This data set provides
information about the field that is indexed.

OUTPUT UPDATED INDEX FILE: This data set is the
updated inplace versicn of the index file.

NEW INDEX FILE: This data set is the new
merged index file created from the current
index file and the update index file. The
DSNAME is 'INDrRG.'FILENAMI.FIELrNAME.

MESSAGE DATA SET: This data set contains
error messages and informaticnal messages
(such as record counts).

III. CONTROI

Tlhe DBINDM prograr is controlled by job control
statements and parameter statements. The job

PAGE 162

control statements are required to execute or
invoke the DBINDM program and to define the
data sets that are used and produced by the
program. The parameter statements are used
to control the functions of the index merge.

JOB CONTROL STATEMENTS

DBINDM Table 2 shows the jct control statements
necessary for executing or invoking the DBINDM
program.

PAGE 163

EBINDM Table 2. Job Control Statements for the
DBINDM Program

STATEMENT USAGE

JCB This statement initiates the lob.
Statement

EXEC This statement specifies the program name
Statement (PGM=DEINDM) or, if the jot ccntrol

statements reside in a prccedure library,
the procedure name.

SYSPRINT This statement defines a sequential message
DD data set. The data set can be written onto
Statement a system output device, a magnetic tape

volume, or a direct access volume. (This
DD statement must be present.)

PR OOT This statement defines the informational
DD data set written by the prcgram. DCB=
Statement (RECPM=FA,LRECL=133,BLKSIZF= 133). DDNAME

is fixed.

CABDIN This statement defines the parameter card
DD data set that contains the program
Statement parameters. Data set resides in the input

stream. DDNAME is fixed.

DATABASE These statements define the database
DD descriptors, and the current database
Statements index file.

RANGt This statement defines the update index
nD file tc be merged with the current index
Statement file. DSNAME must te

'RANGE.'FILENAME.FIELDNAME.

INEMRG This statement defines the new merged
DD index file. The DSNAME is
Statement ,INDMRG.'FILENAME.FIELDNAME.

STFPLIB This statement defines the library where
DD the latest version of the rBINDM program
Statement resides.

IV. MODE OF OPERATIONS

rBINDM can create a new inverted index
file, or it can merge inplace to the
current inverted index file. This is
done at the discretion of the user.

PAGE 164

V. INVOKING DBINDM

PARAMETEB STATEMENTS

The DBINDM program is controlled by
parameter statements. The parameter
statements are entered in the input stream
(CARDIN DD Statement) as required.
Following is a list of DBINDM program
parameters with their functions:

'FILENAME'
identifies the datatase with the
index file beina merged.

Specified as, a 1-6 character name
of the database.

'Mode'
identifies the program mode of
operation.

Specified as: a one character code,
'F' - FIRSTPASS
'R' - RESTART

DEFAULT: NONE.

'Model'
identifies the target merge file.

Specified as: a one character code,
'1' - New File
'0' - Inplace

'Field'
identifies the master inverted index
field.

Specified as: 1-8 character name as
entered in the file descriptors.

'Mode2'
indicates if duplicate list elements
will be processed or not.

Specified as: a one character code,
'1' - Process Duplicates
'0' - No Uuplicates Processed

VI. EXAMPLES

Followinq is an example of the job control

PAGE 165

statements required to invoke DBINDM. The
user wants to merge index file APOLLOA with
PANGE.APOLLO.KEYWORDS and create a new index
file with duplicates being processed. Field
value is 4 bytes long.

//EX AMPLE 1 JOB (9350, SYST,060) ,NECTERICS
//STEP1 EXEC PGM=DBINDM,REGION=800K
//ST 'PLIB DD DSN=NASIS.JOBLIB,DISP=SHB
//SYSPRINT rE SYSOUT=A
//PRTOUT DD SYSOUT A,DCB = (RECFM= F A, PLECL= 133,
// ELKSIZE = 133)
//DD$# DD DSN=NASIS.APOLLC.APOLLC#,DISP=SHR
//DD$ DE DSN=NASIS.APOLLC. APOLLOA,DISP=SHR
//PANGE DD DSN=RANGE.APOLLO.K YWCRDS,DISP=SB
//INDMRG DE DSN=INDMFG.APO LLO. REYWORDS,
// UNIT=2314,VOL=SER=WCRK01,
// CISP=(NEW,KEFP, DLETE) ,ECB= (DSORG=IS,
// RECFM=V,LRECL=4001,BKSIZE=4005,
// ~KP=5,KEYLEN=4,OPTCE=L),
// SPACE=(CYL,(3,1) 1
//CADIN DD *

FILENAME=APOLLO
MCDE =F
MODE1=1
MCDE2=1
FIELD=KEYWORDS /*

//

VII. PROGRAM NOTES

A. If the user wishes to merge inplace,
he first must make a copy of the
current index file (for security
reasons).

B. The input or update index file to
be merged is named
BRANGE.FILENAME.FIEIENAME. Check
this before Trocessinq is begun.

C. When merging to a new file, the new
file being created is called
INDMRG.FILENAME.FIEIDNAME.

D. After the new file is created and
checked, it should replace the current
index file, and the current index
file should be erased.

PAGE 166

TOEIC D.8 - MAINTENANCE USER'S GUIDE

I. INTRODUCTION

The maintenance program (DEPMTN) is an independent
module to be used for maintaining the NASIS
system database. This maintenance will consist of
additions to, deletions from, modifications of the
data contained on a database. The data to be
used to describe the desired changes will take
the form cf transactions and will be obtained
from the transaction database (TRNSCT). The
transactions can reference a particular record,
field or element in describing the desired
change.

Maintenance, as designed, will always be run
non-conversaticnally. It must be run under the
userid of the owner of the database being
maintained. The program is restartable in that,
each transaction processed successfully, is
deleted from the transaction database.

This manual describes the operating procedures,
the mode of operation, and the types of transactions
supported.

II INPUTS AND OUTPUTS

DBMNTN Table 1 lists the major inputs and
outputs from the DBMNTN program.

DBMNTN Table 1. Data sets used (inputs) and
produced (output) by the DBMNNI program.

INPUT DATABASE: These data sets are the files that
make up the database including the descriptors.

TRNSCT FILES: These two data sets are the
anchor transaction file and the TRNSCT file
descriptors.

OUTPUT DATABASE: These data sets are the files of the
database that will be updated.

MESSAGE DATA SET: This data set contains error
messages and other informational messages (such
as record counts).

III. CONTROL

The DBMNTN program is controlled by job control
statements. The job control statements are

PAGE 167

required to execute or invoke the DBMNTN
program and to define the data sets that are
used and produced by the program. The PARM
statement is used on the EXEC card to define
the database being maintained.

JOB CONTROL STATEMENTS

DBHNTN Table 2 shows the lot control statements
necessary for executing or invoking the
DBMNTN program.

DBMNTN Table 2. Job Contrcl Statements for the
DBMNTN Program

STATEMENT USAGE
JOE This statement initiates the lob.
STATEMENT

EXEC This statement specifies the program name
STATEMENT (PGM=DBMNTN) or, if the job control statements

reside in a procedure library, the procedure.
The PARM function must be used with
appropriate database name. (PARM = 'FILE$$')

SYSPRINT This statement defines a sequencial message
DE data set. The data set can be written onto
STATEMENT a system output device, a iagnetic tape

volume, or a direct access volume. (This
DD statement must be present).

PPTOUT This statement defines the informational
DD data set written by the prcgram. CB=-(RECFM=
STATEMENT FA,IRECL=133, BLKSIZE=133) DDNAME is fixed.

DATABASE These statements define all the files that
DE make up the database (descriptor, anchor,
STATEMENTS associated, sutfile, index).

TPKSCT These statements define the TRNSCT (transaction)
DD file and the TRNSCT file descriptors.
STATEMENTS

STEPLIB This statement defines the library where the
DD production or latest version of the DBMNTN
STATEMENT module resides.

STATIC This statement defines the STATIC (statistics)
DD file.
STAT EMENT

IV. MAINTENANCE OPERATING PROCEDURES

PAGE 168

In preparing to run maintenance on a database, the
Database administer should perform a preliminary
step. He may use the CORREC command to peruse
the transactions and to delete any which he
deems to be unnecessary or invalid (See CORRECT
command User's Guide).

Once the transactions are determined to be
acceptable, he is ready to initiate maintenance.
Restart is similar, but should require no
transaction editing.

V. MAINTENANCE MODE OF OPERATICN

The database is opened for update, the transactions
are opened for update and prccessing begins.
Each transaction is handled separately and if
successfully processed, the transaction is deleted.

VI. EXAMPLES

Following is an example of the job ccntrol
statements to initiate the DBMNTN program:

//EXAMPLE1 JOE (9350,SYST,06C),NEOTEBICS,BRGIC:800K
//STEP1 EXEC FGM=DBMNTN,PARM= 'FILE$$'
//ST EPLIB DD DSN=NASIS.JOBLIB, DISP=SH
//SYSPRINT DD SYSCUT=A
//PRTOUT DD SYSOUT=A,DCB = (RECFM=FA,LRECI=133,BL ESIZ E= 133)
//DD$# DD DSN=NASIS.*ILE$$.FILE$$#,DISP=SHR
//ED$ DD DSN=NASIS.FILE$$.FILE$$,DISP=SHE
// RNSCT# DC DS=NASIS.TRNSCT.TPNSC #,CISP=SH
//RNSCT DD DSN=NASIS.TRNSCT. TNSCT, ISP=SHR
//STATIC DD DSN=NASIS.STATIC,DIS=SHR
/1

PAGE 169

TOFIC E.1 - TSPL/I LANGUAGE EXTENSICN

I. INTRODUCTION

The terminal support preprocessor for NASIS (TS) allows
the PL/I programmer to include in his program,
statements, in normal PL/I syntax, which refer to and
use the various terminal support functions. To enable
the use of the TS preprocessor in a particular program,
it is only necessary to insert the following
statement:

% INCLUDE LISRMAC(TS);

This statement must appear before any actual use of the
preprocessor itself.

The preprocessor functicns available are listed in the
appendix along with the terminal control block (TC)
containing the various switches and control fields that
are used by terminal support. The functions provided
perform a set of generalized operations on the terminal
device. These operations can be altered and refined by
the setting of appropriate switches in the TC block
before invoking the particular TS function. This
alteration is most useful for the PUT and PROMPT
operations.

In addition to the functions listed, terminal support
has defined two interrupt conditions, ATTN and END, to
facilitate programmer ccntrol of the terminal device.
The ATTN condition is raised each time the user
depresses the attention key on his terminal. When this
occurs, terminal support calls the last defined PL/I ON
block for ATTN's via the signal mechanism. If the ON
block returns, terminal support will prompt the user
for a command with the fcllowing message:

-ATTN:

The user may respond to this message with any of the
"immediate" commands:

SYNONYM
SYNONYMS
DEFAULT
DEFAULTS
PROFILE
EXPLAIN
PROMPT
STRATEGY
KA

PAGE 170

KP
BACK
END
APOFF
GO

A default response is interpreted as a GO. If during
the execution of one of these commands, the user
depresses the attention key, that command will be
terminated and the user will be reprompted.

The user may define an ON ATTN block in his program,
but he must adhere to the following restrictions:

1. He may only issue output TS functions.

2. If he wants to suppress the system prompt, he
must branch out of his ON block (by so doing,
he cannot return to the point of
interruption).

If the user wishes to disable attentions completely, he
must set the 'DISABLED' bit in the system data table
USERTAB. (This action should only be taken in the most
critical situations).

In the above description, if the user had responded
with an END command, terminal support would have raised
the END condition via the signal mechanism. The
purpose of this condition is to provide a standard
method of terminatinq a program or application and yet
allowing it to perform any "clean-up" actions that are
necessary. As with ATTN, any output TS messages will
be allowed.

The terminal support functions assume that the device
has a screen, and that this screen is divided into an
upper output area and a lover prompting area. The
logical dimensions of the screen are defined by the
physical dimensions or the default values for the
symbols SCRNHGT and SCRNVTH. The current dimensions of
the screen can be found in the TC block durinq the
execution of the program.

II. STATEMENTS

A. ENABLE <ATTN I END I *ALL>;

This statement causes the default ccding for the
END and/or ATTN conditicns to be generated into
the program. The default code for ATTN is to
simply return to the point of interruption. The
default code for END is to branch to a routine

PAGE 171

that will terminate the prograr via a RETURN.

This statement, if Fresent, must appear only once
in the program and before any ENTRY statements.
This statement also implies an ENTRY statement.

B. ENTRY;

This statement must be executed before any other
TS statements, during a particular invocation of
the program. It establishes the default ON
blocks generated by ENAELE and calls terminal
support to initialize the TC block. Because of
its function, an ENTRY statement should appear at
each entry point cf a program, or at a common
point in the processing for all entry points.

An ENTRY need not follow an ENABLE, as the ENABLE
statement includes and implies ENTRY.

C. ON PAGE CALL(entry);

This statement establishes the name of the routine
which is to process paoing of the screen for the
current function. When a function has filled the
screen with data and terminates with more data to
be displayed, a PAGE command will result in a call
to the entry point specified by the most recent ON
PAGE statement,

The "entry" parameter must be, or will be,
converted to a character string of eight or fewer
characters in length.

E. PROMPT MSG(key) <USING(inserts)> <INTO(buffer)>;

This statement has two functions, the outputting
of a message (where the INTO clause is omitted)
and prompting for a command. The message
specified will be located in the message library
and displayed to the user. Any inserts specified
will be placed in the proper positions within the
text before it is displayed. If the message
cannot be found, terminal support will
automatically issue a diagnostic containing the
message key. If a ccmmand prompt is indicated,
the text will be preceded by a dash (-) and a
string of (": :") will be appended to it before it
is displayed. All inserts will be stripped of
leading and trailing blanks. Unspecified inserts
will be replaced by "***".

The "key" parameter must be, or will be converted

PAGE 172

to a character string of eight or fewer characters
in length. The "inserts" parameter must be a list
of twenty or fewer character strings. The
"buffer" parameter must be a character string into
which the command entered is to be placed. It
should be eight characters in length, or
greater.

If the command entered by the user, after synonym
search, will not fit in the string specified by
the user, TC.PROMPT.TRUNCAIION will be turned on
by terminal support. Further, this, or any other
type of error (syntax, etc.), will cause
TC.PROMPTEBROR to be turned on.

E. PPOMPT MSG(key)<USING(inserts)> KEYWORD(id)
INTO (buffer);

This statement is used to request parameters
and/or data from the user or from the profile.

The "key" parameter must be, or will be converted
to a character string of eight or fewer characters
in length. The "inserts" parameter must be a list
of twenty or fewer character strings. The "id"
parameter must be, or will be converted to, a
character string of eight or fewer characters in
length. The "buffer" parameter must be a
character string into which the data is to be
placed. The maximum size data element returned by
terminal support is 255 characters.

If the TC.PROMPT.BYPASS bit is turned on by the
user prior to this statement, terminal support
will examine the remaining parameters in its
buffer and the profile for the data value, but
will not prompt the user. Ctherwise, if no value
is found in the buffer or in the profile, the user
will be prompted for the data value. If the "id"
parameter is null and the data is specified in
keyword format, terminal support will post the
keyword into TC.PROMPT.KEYWORD for the user. If
the program detects an invalid data value and
wishes to reprompt the user for it, the
TC.PROMPT.ERROR bit should be turned on prior to
the PRCMPT. If any errors are encountered by
terminal support, the TC.OMPT.EROP bit will be
turned on. If the data entered will not fit into
the string specified, the TC.PROMPT.TRUNCATION bit
will be turned on. If the value returned was
obtained from the user's profile, the
TC.PROMPT.DEFAULT bit will be turned on.
Likewise, if the value returned was a quoted

PAGE 173

string, the quotes will be removed and the
TC.PRCMPT.STPING bit will be turned on. If the
value returned is an element of a parenthesi7ed
list, only the element will be returned, and the
TC.PPOMPT.MORE_DATA bit will be turned on.
Subsequent prompts will result in succeeding
elements being returned, until the end of the list
is reached.

F. BEAD INTO(buffer);

This statement causes the current contents of the
screen to be returned to the user.

The "buffer" parameter must be a character string
into which the data is to be placed.

G. WRITE FRCM (buffer);

This statement causes the screen to be written
from the area specified, without any editing.

The "buffer" parameter must be a character string
which contains the data to be written.

H. PUT <LINE I PAGE> FROM(buffer) <TAG(value)>
<FORWARDIBACKWARD>;

This statement causes a new record to be placed
into the screen buffer.

The "buffer" parameter must be a character string
which contains the data to be written. The
"value" parameter must be a character string which
is to be used to identify this output record. if
LINE is specified, the record is sequentially
added to the screen buffer. If PAGE is specified,
the screen buffer is reset and this record becomes
the first record of the new screen. The FORWARD
and BACKWARD opticns are used to control the
direction of the sequential filling of the screen
buffer, from the top down, or from the bottom
up.

If the user's data exceeds the width of the
screen, the seccnd and subsequent lines begin at
the position indicated by TC.OUTPUT.INDENT. If
the user's data causes the screen to overflow,
the amount of data written is indicated by
TC.OUTPUT.WRITTEN. If the user wishes only
complete records to be written to the screen, he
should have TC.OUTPUT.PUT9_ARTIAI turned off. If
the user wishes the screen to be automatically

PAGE 174

written when the buffer is filled, he should turn
on the 'C.OUTPUT.AUTO_WRITE bit. If the user
wishes to have his lines Erlit between words (for
text processing) he should turn on the
TC.OUTPUT.WORDBREAK bit. If the user has
displayed a segment of the current record on the
previous page and he wants the remaining segment
tagged and/or indented, he must turn on the
TC.OUTPUT.CONTINUATION bit. If the last PUT
caused the buffer to be filled, the
TC.OUTPUT.OVERFLOW will be turned on.

I FIUSH;

This statement is used to force the contents of
the screen buffer tc be written, even though it is
not filled. If the user wants tc indicate that
more data remains to be displayed via the paging
mechanism, he should turn on the
TC.OUTPUT.MORE DATA bit before his last output
operation.

J, FINISH;

This statement causes the preprocessor to generate
the necessary code to enable execution time
communication with terminal support. It must be
the last TS statement in the program.

PAGE 175

TOPIC G.1 - USAGE STATISTICS

I. INTRODUCTION

Usage Statistics is, essentially, a separate sub-system
of NASIS, whose function is tc collect and retain
statistics, conceiving the use and status of the
system. The statistics maintained are divided into
retrieval statistics, use cf the system, and
maintenance statistics, status of the data. The

retrieval statistics include counts of the number of
times that various commands have been invoked, the
number of retrieval sessions, the dates and time used
for those sessions, as well as the aggregate time spent
retrieving data. The maintenance statistics include
counts of the numbers of record additions, deletions
and updates, for the anchor file, subrecord files and
for all inverted index files.

The maintenance of these statistics is an automatic
function and will not be discussed here. What will be
covered by this document is the production and use of
the reports available through Usace Statistics. It
should be noted that the retrieval statistics are
available to any NASIS user, while the maintenance
statistics are available to the owner of the dataplex
only.

II. STATISTICS CFECKPOINT

The statistics gathered for retrieval are maintained on
a per session basis, with a capacity for thirteen
sessions before re-initialization is necessary.
Because of this, a check is made each. time a new
session is begun, and if re-initialization is
necessary, a checkpoint listing of the retrieval
statistics is produced, so that the data on file will
not be lost.

The checkpoint report is a formatted list of the data
on file for a particular NASISID, before
reinitialization. It will contain a line entry for
each of the sessions on record, displaying the command
counts, the lines, the date, the file name, and other
pertinent information. The DEA should examine this
report to analyze the usage that NASISID is making of
the system and of the individual dataplexes. If he
deems that some action is necessary, e.g., a user is
loqqged onto the system for excessive periods of time,
but not executing many commands, he should do whatever
he feels is reauired. In any event, the report should
be retained for future reference and analysis, and

PAGE 176

should probably be filed by NASISID.

A sample checkpoint report is included in Figure 1.

III. RETRIEVAL STATISTICS REPCRT

By submitting JOB CCCRPBNTR, the status of the entire
retrieval satistics file can be presented. This report
displays the activity of the various NASISIDS, the
various data bases and the various retrieval
commands.

The retrieval report is formatted by NASISID, with a
line entry for each terminal session. These entries
present the various command counts, the lines, the file
names, and other pertinent information. In addition, a
summary is made, at the end, of the agqreqate times and
sessions for all users.

A sample retrieval report is included in Figure 2.

IV. MAINTENANCE STATISTICS REPORT

By submitting JOB CCCRPRTM, the status of the entire
maintenance statistics file can be presented. This
report should be used by the DBA to validate the
maintenance records of each data base. In addition, it
should be used to assess the maintenance activity of
the various dataplexes. With this information, the DBA
will be in a better position to know the exact status
of his dataplexes, when to backup the system, when to
reorganize his files, and many other questions that
must be answered in order to maintain proper control
over the system and its data.

The maintenance report is formatted by dataplex name,
with a line entry for each maintenance run. These
entires present the counts of the number of additions,
deletions and updates wade to the anchor and associated
files, the subrecord files and the inverted index
files. In addition, a summary is made, for each file
showing the aqgregate and the averaqe number of
additions, deletions and updates to the dataplex.

A sample maintenance report is included in Figure 3.

MAINTENANCE STATISTICS FOR SYSTEMS MANAGER ** 01/11/73 PAGE 1

DATAFLEX TOTAL ANCHOR NUMBER TRANS MAINTENANCE FILEPLEX SUBPLEX XPLEXNAME TRNS RECORDS RUNS RUN DATES ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATES

ASRD1$ 3,132 1 12/19/72 3,132

FILEPLEX ADDS DELETES UPDATES

TOTAL 3,132 FOR ALL RUNS

AVERAGE 3,132 PER RUN

RETRIEVAL STATISTICS 01/03/73

NASt'SID CONN-TIME CPU-TIME ' # STRAT STORED OWNER FILE FIELD ACTUAL TOTAL NUMBER OF
HR:MM:SC HR:MM:SC:MS SES LENGTH # ID NAME NAME EXP SEL SRCH CORR

NE01 0:53:30 0:00:48:790 5 0 0

SAOWNER ASRD1$A AUTHOR 3 0 0 0
SAOWNER. ASRD1$B KEYWORDS 13 • 0 0 0
SAOWNER DB2TDBA EMPAGE 1 0 0 0
SAOWNER DB2TDBB TOTALCAR 1 0 0 0
SAOWNER DB2TDBC KIDAGE 1 0 0 0
SAOWNER DB2TDBD PET 1 0 0 0

SAOWNER DB2TDBE SVCDATE 1 0 0 0

9

SNAPSHOT (CHECKPOINT)OF RETRIEVAL STATISTICS RECORDS BEFORE REINITIALIZATION

12/18/72
LISR ID CONN-TIME CPU-TIME # STRAT OWNER-ID FIELD FILE SESSION #

HR:MIN:SC HR:MN:SC:MS SE. LEN TH N NAME NAE SESSION #HR:MIN:SC HR:MN:SC;:MS SES LENGTH NAME NAME DATE EXPANDS SELECTS SEARCHS CORRECTS
NE01 :19:40 0:00:12:399 2 SAOWNER KEYWORDS ASRDI$B 721215

721215 1

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215 1

